An Implantable Neuromorphic Sensing System
Featuring Near-sensor Computation and Send-
on-Delta Transmission for Wireless Neural
Sensing of Peripheral Nerves

Yuming He, Student Member, IEEE, Federico Corradi, Chengyao Shi, Student Member, IEEE, Stan
van der Ven, Martijn Timmermans, Jan Stuijt, Pieter Harpe, Member, IEEE, Lucas Lindeboom,
Evelien Hermeling, Geert Langereis, Elisabetta Chicca, Senior Member, IEEE, Yao-Hong Liu, Senior
Member, IEEE

Abstract— This paper presents a bio-inspired event-driven
neuromorphic sensing system (NSS) capable of performing on-
chip feature extraction and “send-on-delta” pulse-based
transmission, targeting peripheral-nerve neural recording
applications. The proposed NSS employs event-based sampling
which, by leveraging the sparse nature of ENG signals, achieves a
data compression ratio of >125x, while maintaining a low
normalized RMS error of 4% after reconstruction. The proposed
NSS consists of three sub-circuits. A clockless level-crossing (LC)
ADC with background offset calibration has been employed to
reduce the data rate, while maintaining a high signal to
quantization noise ratio. A fully synthesized spiking neural
network (SNN) extracts temporal features of compound action
potential signals consumes only 13 puW. An event-driven pulse-
based body channel communication (Pulse-BCC) with serialized
address-event representation encoding (AER) schemes minimizes
transmission energy and form factor. The prototype is fabricated
in 40-nm CMOS occupying a 0.32-mm? area and consumes in total
28.2 pW and 50 pW power in feature extraction and full diagnosis
mode, respectively. The presented NSS also demonstrates to
extract temporal feature of compound action potential signals with
10-ps precision.

Index Terms— Peripheral nerves, Neural recording, Body
channel communication, Neuromorphic, Level-Crossing ADCs,
Neural sensors, Electroneurogram (ENG), Action potentials,
Spiking Neural Networks, Feature extraction.

I. INTRODUCTION

HE peripheral nervous system (PNS) can be seen as a

“highway” for propagating neuron firings, i.e., action
potentials (AP), for the bidirectional communication between
the central nervous system (CNS) and various organs. The
electroneurogram (ENG) can be measured with a nerve cuff or
a neural probe surrounding or penetrating the peripheral nerves,
respectively. Nerve ENG provides rich clinical information for
diagnosis and can be the source of modulating human health as
electroceuticals [1][2]. Decoding of the firing pattern of afferent
compound action potentials (CAPs), the result of summation of
many APs from the individual axons in a nerve trunk, holds the

promise for indirect sensing of clinically relevant information,
e.g., inflammation status or glucose levels, which can be
employed in future electroceutical closed-loop applications [3].
Next, the nerve conduction velocity (NCV) [4] is widely used
as a diagnostic tool for various neuropathies. The requirement
on temporal precision for such measurements is strict since the
CAPs typically last for only a few milliseconds. This precision
is especially critical for NCV studies [5], which measure the
time difference between peaks of two CAPs recorded from two
locations on the same nerve, as shown in Fig. 1. To achieve a
high accuracy of NCV with a miniature nerve implant, temporal
precision of the recording should be in the order of 10’s of ps,
since NCV of a myelinated nerve can be up to 120 meter/s.
Better temporal precision of the recording allows the volume of
the nerve implant (e.g., nerve cuff) to be further miniaturized.
To achieve such temporal precision, the analog-to-digital
converters (ADCs) in a conventional neural recording system
need to have a sampling rate of 10’s of kSample/s (kSps), which
is 10-100x higher compared to the sampling of other
electrocardiogram (ECG) signals. This increases the energy
consumption not only in wireless transmission, but also in local
processing, storage, and transportation of the data.
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Fig. 1. Concept illustration of neural recording of peripheral nerves, and the
conceptual illustration of nerve conduction velocity measurement.

In order to have high spatial selectivity, neural implants for
peripheral nerves should be placed very close to the surface (or



inside) the nerve, as illustrated in Fig. 1. To avoid nerve tissue
damages, such nerve implants should have strict volume and
energy constrains. A nerve implant with a volume in the
millimeter-scale is highly preferred. Since there is no sufficient
volume for a battery, the electronic system should consume low
energy well below 100 uW, to enable wireless power transfer.

Fig. 2 shows two conventional architectures of implantable
sensing systems which typically consist of one or multiple
channels of analog front-end (AFE), ADC, digital signal
processing (DSP), memory, and a wireless transmitter (TX).
These architectures are based on Nyquist sampling, but one
replies on remote computation (Fig. 2(a)) and another one has
embedded local computation (Fig. 2(b)). The first architecture
is suitable for diagnosis purposes. The high-precision raw
sensor data sampled by the Nyquist ADCs are sent wirelessly
to a remote hub to perform further data processing. However,
such “frame-based” sampling produces a large amount of data
from neural recording, which will consume high wireless
transmission energy [6][7]. In addition, performing the
computation remotely may introduce potential privacy
concerns.

Fig. 2(b) shows an alternative approach based on near-sensor
local computation, e.g., feature extraction or classification, to
reduce the burden on data transmission. However, this approach
requires power- and volume-hungry computation and storage
hardware, which is not affordable with a millimeter-scale nerve
implant. In addition, such architecture may not be suitable in
practice, if raw data are not available in case personalization or
detailed diagnosis are needed. Reference [7] uses a local
processor to extract ECG signal features, but it requires a
relatively large memory (46 kByte) and high-power
consumption (~60 puW) for detecting only the peak of the ECG
signal, i.e., the R wave. Note that full ECG features (P, QRS
and T waves) are still crucial for accurately detecting many
cardiac abnormalities, e.g., arrhythmias.
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Fig. 2. Conventional architectures of sensing system. (a) Nyquist sampling with
remote computation; (b) Nyquist sampling with local computation.

ENG signals have very sparse activity (typically <10 CAPs
per second), but a high temporal resolution is still required.
High redundancy will be generated, if these signals are sampled
with convention high sampling rate Nyquist ADCs, thus leading
to a poor system efficiency. Inspired from biology [8], the

energy consumption of information processing and
transportation can be significantly reduced if only the changes
(i.e., delta) of the signal are processed, while information can
still be recovered on the reception side with high resolution.
One example of such a sensing system is our retina, whose
neurons only fire when detecting temporal changes from
photoreceptors. The action potentials fired from retina neurons
are transmitted through an optic nerve with quite limited data
capacity and energy budget, but our brain (the receiver of
information) has no problem reconstructing high-quality
images. This concept is also suitable for implantable neural
sensing systems with very limited energy sources.

Fig. 3(a) illustrates one example waveform of a CAP. Instead
of processing signals with a constant clock in every frame, the
system is active only if there are CAPs. This significantly
reduces the data rate, and thus the requirements of the hardware
as well as the energy consumption. Furthermore, the temporal
feature can be well preserved, without being limited by the
sampling grid of Nyquist ADCs. To implement such bio-
inspired sampling mentioned above, an analog to spike
converter (ASC) based on level-crossing ADCs (LC ADC) can
be employed to perform “delta encoding” [9], which reports (up
or down) events when changes larger than a certain threshold
are detected. As shown in Fig. 3(a), the ASC generates UP or
DN pulses when the CAP signal crosses one quantization (or
threshold) step with a positive or negative slope. This greatly
reduces the temporal redundancy.
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Fig. 3. (a) Delta encoding of ENG CAPs, and its temporal features D, R, and
H (b) The conceptual block diagram of the proposed Neuromorphic Sensing
Systems.

Fig. 3(b) shows this proposed neuromorphic sensing system
(NSS) concept [10]. It includes an ASC for delta encoding, a
spiking neural network (SNN) for local computation, and a
pulse-based transmitter tailored for low-energy event-driven
transmission. The event-based nature of the NSS not only
improves the energy efficiency by exploiting the sparse nature
of CAP signals, but also avoids a power-hungry system clock
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Fig. 4. The detailed block diagram of the proposed NSS.

generation and synchronization circuits. Most importantly, the
temporal precision is no longer limited by the fixed sampling
grid of the clock.

The proposed NSS is designed to support dual-mode
operation: full diagnosis and feature extraction mode. The
capability of dual-mode operation is crucial for implantable
sensing devices since detailed diagnosis is required in case of
urgent situations, e.g., implant failure. When the NSS is in the
feature extraction mode, only the extracted temporal features
(i.e., labels) are transmitted out for energy saving, or they can
be decoded and fedback to the implant stimulator to perform
closed-loop neuromodulations. Fig. 3(a) shows that three
temporal features can be extracted from CAPs, i.e.,
depolarization (D), repolarization (R) and hyperpolarization
(H). They can be detected from the polarity and density of the
spike trains [11]. When full diagnosis is required, the NSS
programs the ASC to have higher precision and the pulse-based
TX to operate at a higher event transmission rate, so that raw
CAP signals can be transmitted in full detail.

The rest of this article is organized as follows. Section Il
discusses the proposed architecture of NSS and its design trade-
off. Section Il describes the implementation of the circuits. The
measurement results will be shown in Section IV. Finally,
Section V presents the conclusions.

Il. PROPOSED ARCHITECTURE AND DESIGN TRADE-OFFS

This section discusses in detail the proposed NSS
architecture. The design trade-off between quantization error
and event transmission rate will also be provided.

A. Architecture Overview

Fig. 4 shows more detail of the proposed NSS. This work
demonstrates two channels, which is the minimum channel
number required for performing a conductive velocity study.
The number of sensing channels can be easily scaled in the
proposed NSS, based on the requirements and constrains from
different clinical use cases.

Two ASCs are implemented as level-crossing ADCs (LC-
ADCs). LC-ADCs perform delta encoding, so they also have
better immunity to low-frequency noise than other event-driven
ADCs [9].

Four outputs of two ASCs (UP1, DN1, UP2, and DN2) are
connected to the SNN which is only active when there are
CAPs. Thanks to the reduced temporal redundancy, the
memory needed for the SNN to extract the signal features and

generate corresponding labels is reduced by 2-10x. Note that
this memory is distributed in SNN neurons, which also reduces
the energy required for memory access.

In feature extraction mode, the SNN inference core can
generate three temporal labels (D-R-H), which are then encoded
with a serialized form of address-event representation (AER)
[12]. The AER output is further encoded with Manchester code
before the body channel communication (BCC) transmission,
minimizing the residue charge in the tissue (to be detailed in
Section I11-C).

B. System Analysis and Design Trade-offs

To achieve the targeted temporal and amplitude resolution in
neural recording, conventional Nyquist ADCs are typically
designed with a high dynamic range up to 10-bit resolution and
sampled with high frequency up to 30 kSps [13]. A large
amount of data needs to be transferred to an external device
wirelessly, resulting in a high data rate of up to 300 kbps each
channel in full diagnosis mode. As reported in [14], the data
transmission consumes more than 90% of the total system
energy. The proposed NSS reduces the data rate by leveraging
the sparse nature of CAP signals.

For a Nyquist sampling system, the ADC’s clock defines the
time stamps and thus the precise timing of the rest of the system
(including wireless link) is not critical because the time stamps
are already defined together with the data. However, in this
clock-less event-based sampling system, the time stamps are set
based on the timing of the received wireless data, i.e., time itself
represent the time stamps, and thus timing variation in the entire
chain affects temporal precision. The system timing resolution
also determines the signal quality after reconstruction. The
timing resolution can be limited by many parts of the NSS. One
dominant limitation is the maximum event transmission rate the
NSS can achieve, or equivalently how fast two events can be
transmitted consecutively. If one event packet, i.e., an event
with serial address-event representation, has a long length in
time, the transmission of the following event must be delayed,
which equivalently introduces a time-domain quantization
error.

To minimize the length of event packets (or maximize the
event transmission rate), the bit period must be reduced.
However, this requires a higher speed of the Pulse-BCC PA,
which also consumes more power. To understand the relation
between the maximum required event transmission rate and the
signal quality after reconstruction, analysis based on a
numerical simulation are performed and validated. In this
analysis, a synthetic action is converted to UP/DOWN events



by the ASC. Note the event rate is coupled to the number of bits
(or the quantization steps) of the ASC, i.e., finer quantization
steps produce more events.
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Fig. 5. Simulated SQNR versus minimum time interval between two events
and the simulated data rate compression ratio.

Since the SNR of recorded APs in-vivo is typically limited to
20 dB [15] due to biological noise and wide signal bandwidth,
the target of the maximum signal-to-quantization-noise-ratio
SQONR is set to 25 dB in this work. Based on the analysis
provided in [16],

SQNR = —20l0g10(8 * fyc) — 14.2, @)

Where 5 is the timing uncertainty of the event-based system;
fsic is the signal bandwidth, which is ~1 kHz for the nerve’s
CAP signal. To achieve an SQNR of 25 dB, the system timing
uncertainty should be less than 10 ps, which also sets the upper
limit of the event packet length.

Fig. 5 shows the relation between the required timing
resolution and the simulated SQNR, which matches well with
the theoretical results from Eq. (1). Fig. 5 also shows a
simulated data rate reduction compared to conventional Nyquist
sampling and frame-based transmission. The firing rate of CAP
is 10 Hz, and the AER overhead has been included for the event
transmission. It shows that the proposed NSS can achieve
higher than 200x of data reduction, while keeping SQNR above
25 dB.

I11. CIRCUIT IMPLEMENTATION

Three circuit innovations will be discussed in this section: (1)
a background offset mitigation technique is proposed to
enhance the offset tolerance of ASCs; (2) a fully synthesized
low-power SNN is introduced, which is capable of on-chip
temporal feature extraction; (3) a power amplifier (PA) with
charge balancing and AER encoder for event-driven Pulse-
based Body Channel Communication (Pulse-BCC) is
introduced.

A. LC ADC with the Offset Calibration

The block diagram of the LC ADC is shown in Fig. . The
ADC continuously monitors the input signal and generates an
UP or DN event when the input change crosses a +1 LSB or -1
LSB threshold, respectively. To do so, the analog input signal
is diminished by a voltage generated by a digital-to-analog
converter (DAC), Vpac. After the subtraction, a pre-amplifier
amplifies the signal and two charge adders add and deduct 1
LSB from the signal, respectively. Two continuous-time
comparators are employed to detect when the zero-crossings

occur. If it happens, a digital control block (Dig. Ctrl.) will
update Vpac and wait for the next zero-crossing.
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Fig. 6. Architecture of the LC ADC.

The LC-ADC employs two comparators to actively detect
rising and falling zero-crossings. However, the offset difference
of these two comparators, degrades SNDR of the LC ADC.
Therefore, a background offset mitigation technique is
proposed and shown in Fig. . Instead of using two separate
comparators, the first stage (pre-amp) is shared between them
so that the offset errors of the second stage are divided by the
pre-amp gain A. Then, a double-sampling switched-capacitor
circuit removes the offset error e of the pre-amp and stores the
two threshold levels (Vn and VL) in three steps.

First, the reference levels £V sg and the offset e are amplified
by A and stored on capacitor C1. Second, only the amplified
offset error e is stored on another capacitor C2 whose
capacitance is the same as C1. Third, as the normal operation,
C1 and C2 are connected, the offset error e is cancelled, and the
input-referred voltage is shifted by means of the capacitors is
+V,sg for the threshold voltages Vi and V.. These operations are
controlled by three non-overlapping signals ¢i-3, which only
toggle in the presence of UP or DN pulses. To support dual-
mode operation, the pre-amp and the comparators can be
programmed with different power and bandwidth.
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Fig. 7. Background ASC offset cancellation at different phases: (a) reference
store; (b) offset error store; (c) normal operation.



B. Fully Synthesized Low-power SNN

Conventional Neural Network (NN) architectures either
cannot support event-driven operation [17], or use analog-
intensive neurons and synapses which are sensitive to PVT
variations [18], and both still consume relatively high power
(100’s of puW). In this work, a low-power and fully
synthesizable SNN is presented, as shown in Fig. 8. To exploit
the sparse activity of the ENG signals, the network is made self-
timed, resulting in near-zero dynamic power dissipation in the
absence of any input activity. The SNN consists of two
consecutive pools of fully recurrently connected spiking
neurons and each pool contains 46 neurons.
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Fig. 8. Block diagram of the fully synthesizable SNN core.

Arbiter

proposed arbiter and its waveform are shown in Fig. 9. This
SNN is fully synthesized by the standard digital design flow.

Since the temporal pattern of the CAP signals is important,
the SNN needs to have a fast response time when extracting
features. The spike arbiters determine the speed of our SNN.
Every neuron layer contains such an arbiter. The largest one is
at the first layer and has N=46 spike inputs. The delay Teycle Of
the arbiter to process one spike is mainly determined by its
embedded priority encoder. With Tgae being a typical logic gate
delay in this technology, we found:

Tcycle =3 #*log2(N) = Tgate- (3)

Then, the number of spikes per second that can be processed by
the arbiter is 1/Tycle. FOr example, in 40nm CMOS, Tgae=40 ps.
If N=46, then Teee = 3*8*40 ps = 1 ns. This delay has a
negligible impact on temporal precision.

C. Pulse-BCC PA and Address-Event Representation (AER)

Instead of adopting high-frequency EM radiation
[71[19][20], body-channel communication (BCC) is adopted in
this work for the following reasons. First, it does not require an
antenna, so the NSS volume can be miniaturized. Second, it has
lower propagation loss inside the human body. And third, it also
provides better privacy since the signals do not radiate [21].

The differential PA, as shown in Fig. 4, generates a positive
output when OH is high and a negative signal when OL is high.
When both OH and OL are low, the PA outputs are reset to half
VDD, and it only dissipates 1.2uW.
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These pools are followed by a fully-connected layer with 8
neurons. A stream of spikes (digital pulses) represents the
network inputs and outputs, whereas the synaptic weights are
stored with 8-b digital numbers. Note that digital spiking
neurons provide more flexibility, lower power consumption and
low sensitivity to PVT variations, compared to charge-based
analog spiking neurons in [18].

Input spikes arriving at arbitrary times select a corresponding
weight, which gets added to an accumulator. When the digital
accumulator overflows, it produces an output spike similar to
biological neurons’ integrate-and-fire operation. To solve
timing collisions, each neuron has an arbiter that adds a small
time offset (100’s of ns) to set the priority using a “Round-
Robin” polling algorithm. The simplified block diagram of the

AER & Manchester
coding Table (@feature

extraction mode)

()

AER & Manchester

coding Table (@full
diagnosis mode)

AER |  OH AER |  OH
D | 110 | + + + UPL | 011 | -+ +-+-
R | 101 | 4 -+ +- DN1 | 010 | -+ +--+
H | 100 | 4 -+-+ UP2 | 001 | -+ -+ +-
DN2 | 000 | -+ -+-+

(b)

Fig.10. (a) Output waveforms from AER and BCC-TX; (b) AER and
Manchester coding tables from two operation modes

In feature extraction mode, three temporal labels generated
by the SNN will be coded with a serialized 3-bit AER, as
illustrated in Fig. 10. The corresponding “address” of each label
will be attached to the polarity of the event (either up or down),
using a serialized 2-bit Tenary code (with “+”, “-”, and “0”).
The AER output is further coded with Manchester coding, to
ensure the number of “+” and “-” are always equal, which is



important to ensure the charge balance. To transmit these AER
coded labels, the differential Pulse-BCC PA either charges or
discharges the tissue if the AER output is “+” or “-”. When the
AER output is “0”, the reset circuit of the PA will short two
ends of the BCC coupler and connect to half VDD, to further
remove any residue charge in the tissue.

According to the discussion in Section II-B, the event packet
length should be less than 10 ps to ensure that the timing
resolution of the event-based transmission is fine enough not to
degrade signal quality. The event packet length can be
calculated by

Tpacket =N * Ty + Tresers 5)

where n represents the number of bits for the AER and
Manchester code (in this case is 6), Tyit is the period of each bit,
and Treset is the time required for the reset circuit to remove the
residue charge in the tissue. Note that Treset heavily depends on
the strength of the reset circuit and the BCC coupler geometry,
and it is ~4 ps in this work. The Pulse-BCC PA has a
programmable bit period in the range of 0.5-2ps.

IV. MEASUREMENT RESULTS

As shown in Fig. , the proposed NSS is fabricated in 40-nm
CMOS technology and it occupies only 0.32 mm?, thanks to a
reduced memory demand and the area-efficient Pulse-BCC.

To evaluate the performance of the LC-ADC, a sinusoidal
wave is set as the input. In feature extraction mode, it achieves
30-dB SNDR with 7-uW. In full diagnosis mode, at a higher
power of 17- uW, it achieves 72-dB SFDR and 59.5-dB SNDR
which is shown in Fig. 5(a). Fig. 12(b) shows the simulated and
measured SNDR with different induced comparator offsets and
the improvement could be observed after employing a pre-
amplifier.
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The NSS is characterized with a synthetic CAP waveform
according to our neural recordings from intact earthworm’s
medial giant nerve fiber, as shown in Fig. 13(a), which is widely
used approach for studying neurophysiology [22]. It is provided
as the input signal generated by a waveform generator, with an
amplitude matched to the ASC’s full scale and a frequency of
~10 Hz (i.e., 10 CAPs per second). Fig. 13(b) and 13(c) show
the outputs of the ASC and the Pulse-BCC TX outputs in full
diagnosis mode. Fig. 13(b) shows the time domain waveform



from the Pulse-BCC output with Manchester coded AER. The
event packet length is measured to be ~6 ps. The reconstructed
waveform from the Pulse-BCC TX output is shown in Fig. 14,
where the reconstruction is implemented with a simple
accumulation without any filtering. The measured Normalized
RMS error (NRMSE) between the input and reconstructed
signals is 4%, and the SQNR is estimated to be 27.9 dB, which
is close to the analysis in Section I1-B.

The measured power consumption of the SNN during the
feature extraction is 2 uW and 11 pW for dynamic and leakage
power, respectively. The SNN is only active when the input
signals change substantially, leading to very low dynamic
power. The leakage power is limited by the nanoscale
transistors in the implemented process and can be further
improved with advanced techniques or process [23].

The temporal resolution is typically limited by the sampling
period (e.g., ~33 us in [6][24]) in conventional frame-based
sampling systems [25]. The temporal resolution in feature
extraction mode is measured by overlaying multiple of
extracted R labels of the CAP and measuring the timing
uncertainty, as shown in Fig. 15. The SNN is pre-trained to
recognize the R feature of the synthetic CAP. The measurement
result shows that a temporal precision of 10 s can be achieved
with the proposed event-based NSS.
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Fig. 16(a) shows the setup for the evaluation of the Pulse-
BCC link. The electronic module area of the NSS, including the
coupler of the BCC TX, is only 72 mm2. A PCB for the BCC
receiver (RX) has been developed using commercially available
components. A porcine tissue with 2.5-cm thickness has been
used as the communication channel for the BCC link. Fig. 16(b)
shows the TX input data and the received output from the RX.

The NSS consumes only 28.2 uW and 50.5 pW system
power in the feature extraction and full diagnosis mode,
respectively. Currently the system power consumption is
limited by the leakage performance of the selected process. The
comparison with state-of-the-art electrophysiology (ECG,
ENG) sensing and data transmission systems is shown in Table
I. Thanks to the bio-inspired event-based sampling, the data rate
can be reduced by 125x, while achieving 10 us temporal
resolution. Note this compression ratio is with respect to a 30
kSps 10-b Nyquist ADC, and a CAP firing rate of 10 Hz.
Although adaptive sampling techniques can also achieve a
compression ratio of 7x [7], it requires complicated and power-
hungry digital processing for mode control. Although finer
temporal resolution can be achieved with a higher sampling
frequency as in [20], this also leads to a higher system power
consumption.

The presented NSS also has smallest system module area,
thanks to the crystal-less event-based operation and the
antenna-less body-channel communication. All these features
make this NSS a very promising architecture for neural sensing
of peripheral nerves.

Table I. Comparison with state-of-the-art implantable sensing system

i [7] Kim [19] Shon [20] Azin
This work TBIOCAS14 | Sensors17 | JSSC'11
Tech. (nm) 40 180 N.A. 350
Supply (V) 0.9/171.1 1.2 N.A. 1.5
AFE+ADC+ AFE+ADC | AFE+ADC+
System ADC+SNN+TX DSP+TX +TX DSP+TX
Aoslcations Implantable ENG (PNS) :Ve?rable ECG Implantable | Implantable
PP Feat. Extr. | Full diag. Ei?r- Full diag. | ENG (PNS) | ENG (Brain)
ADC architecture LC (event-based) SAR (Nyquist) NA (Nyquist) |SAR(Nyquist)
Aggta 'atell‘:h:t <100 ~2.4k | 512/64 (Adaptive) | 10kx10b | 35.7kx10b
Sample 1318 | avenis | eventrs x12b =877 =100k =357k
x nr. of bits (bps)
Data compression| >125%A 7x 1% 1%
Temporal 10 >20008 288
precision (us)
ADC ENOB 5 [ 9.5 10.3 N.A. 9.1
TX freq./mod. |0.5-us Pulse based BCC 2.4GHz BLE 400MHz FSK |433MHz FSK
Nr. of chan. 2 3 2 8
Power cons. (W)
X 1.2 1.5 1000 13300 15510 200
DSP/NN 13 15 42 o] N.A. 26
ADC/ASC 14 34 18 38 N.A. 47
Total® 28.2 50.6 1060 13340 N.A. 274
Total power
cons /Ch (W) 141 253 330 4430 N.A. 34
Core die area
(mm?)° 0.32 8.46 N.A 243
System module 72 ~500 924 NA.
area (mm-)
On-chip labeling D/R/H | Peak (R) only No Peak(R) only
A Compared to 300 kbps ® Limited by ADC sampling rate. Estimated by excluding AFE.

V. CONCLUSION

This work presents a bio-inspired neuromorphic sensing
system, including compressed sampling with delta encoding,
event-based spiking neural network for local feature extraction,
and an event-driven pulse-based body channel communication
for miniaturization. This work targets the application of neural
recording in peripheral nerve implants, which requires fine



temporal resolution. The analysis in Section 11 shows that there
is a trade-off between event transmission rate, data compression
ratio and the signal quality after reconstruction. The proposed
NSS demonstrates the capability of supporting two recording
modes: the full diagnosis mode which transmits raw sensing
data with low power consumption, and the feature extraction
mode which transmits only the extracted temporal feature with
fine precision. The presented NSS architecture features high
energy efficiency, miniature form factor, and high temporal
resolution, making it a promising architecture for neural
recording of peripheral nerves implants.
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