
 

 

 

Abstract— This paper presents a bio-inspired event-driven 

neuromorphic sensing system (NSS) capable of performing on-

chip feature extraction and “send-on-delta” pulse-based 

transmission, targeting peripheral-nerve neural recording 

applications. The proposed NSS employs event-based sampling 

which, by leveraging the sparse nature of ENG signals, achieves a 

data compression ratio of >125×, while maintaining a low 

normalized RMS error of 4% after reconstruction. The proposed 

NSS consists of three sub-circuits. A clockless level-crossing (LC) 

ADC with background offset calibration has been employed to 

reduce the data rate, while maintaining a high signal to 

quantization noise ratio. A fully synthesized spiking neural 

network (SNN) extracts temporal features of compound action 

potential signals consumes only 13 W. An event-driven pulse-

based body channel communication (Pulse-BCC) with serialized 

address-event representation encoding (AER) schemes minimizes 

transmission energy and form factor. The prototype is fabricated 

in 40-nm CMOS occupying a 0.32-mm2 area and consumes in total 

28.2 W and 50 W power in feature extraction and full diagnosis 

mode, respectively. The presented NSS also demonstrates to 

extract temporal feature of compound action potential signals with 

10-µs precision. 

 
Index Terms— Peripheral nerves, Neural recording, Body 

channel communication, Neuromorphic, Level-Crossing ADCs, 

Neural sensors, Electroneurogram (ENG), Action potentials, 

Spiking Neural Networks, Feature extraction.  

 

I. INTRODUCTION 

HE peripheral nervous system (PNS) can be seen as a 

“highway” for propagating neuron firings, i.e., action 

potentials (AP), for the bidirectional communication between 

the central nervous system (CNS) and various organs. The 

electroneurogram (ENG) can be measured with a nerve cuff or 

a neural probe surrounding or penetrating the peripheral nerves, 

respectively. Nerve ENG provides rich clinical information for 

diagnosis and can be the source of modulating human health as 

electroceuticals [1][2]. Decoding of the firing pattern of afferent 

compound action potentials (CAPs), the result of summation of 

many APs from the individual axons in a nerve trunk, holds the 

promise for indirect sensing of clinically relevant information, 

e.g., inflammation status or glucose levels, which can be 

employed in future electroceutical closed-loop applications [3]. 

Next, the nerve conduction velocity (NCV) [4] is widely used 

as a diagnostic tool for various neuropathies. The requirement 

on temporal precision for such measurements is strict since the 

CAPs typically last for only a few milliseconds. This precision 

is especially critical for NCV studies [5], which measure the 

time difference between peaks of two CAPs recorded from two 

locations on the same nerve, as shown in Fig. 1. To achieve a 

high accuracy of NCV with a miniature nerve implant, temporal 

precision of the recording should be in the order of 10’s of s, 

since NCV of a myelinated nerve can be up to 120 meter/s. 

Better temporal precision of the recording allows the volume of 

the nerve implant (e.g., nerve cuff) to be further miniaturized. 

To achieve such temporal precision, the analog-to-digital 

converters (ADCs) in a conventional neural recording system 

need to have a sampling rate of 10’s of kSample/s (kSps), which 

is 10-100× higher compared to the sampling of other 

electrocardiogram (ECG) signals. This increases the energy 

consumption not only in wireless transmission, but also in local 

processing, storage, and transportation of the data. 

    
Fig. 1.  Concept illustration of neural recording of peripheral nerves, and the 

conceptual illustration of nerve conduction velocity measurement. 

In order to have high spatial selectivity, neural implants for 

peripheral nerves should be placed very close to the surface (or 
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inside) the nerve, as illustrated in Fig. 1. To avoid nerve tissue 

damages, such nerve implants should have strict volume and 

energy constrains. A nerve implant with a volume in the 

millimeter-scale is highly preferred. Since there is no sufficient 

volume for a battery, the electronic system should consume low 

energy well below 100 W, to enable wireless power transfer. 

Fig. 2 shows two conventional architectures of implantable 

sensing systems which typically consist of one or multiple 

channels of analog front-end (AFE), ADC, digital signal 

processing (DSP), memory, and a wireless transmitter (TX). 

These architectures are based on Nyquist sampling, but one 

replies on remote computation (Fig. 2(a)) and another one has 

embedded local computation (Fig. 2(b)). The first architecture 

is suitable for diagnosis purposes. The high-precision raw 

sensor data sampled by the Nyquist ADCs are sent wirelessly 

to a remote hub to perform further data processing. However, 

such “frame-based” sampling produces a large amount of data 

from neural recording, which will consume high wireless 

transmission energy [6][7]. In addition, performing the 

computation remotely may introduce potential privacy 

concerns.  

Fig. 2(b) shows an alternative approach based on near-sensor 

local computation, e.g., feature extraction or classification, to 

reduce the burden on data transmission. However, this approach 

requires power- and volume-hungry computation and storage 

hardware, which is not affordable with a millimeter-scale nerve 

implant. In addition, such architecture may not be suitable in 

practice, if raw data are not available in case personalization or 

detailed diagnosis are needed. Reference [7] uses a local 

processor to extract ECG signal features, but it requires a 

relatively large memory (46 kByte) and high-power 

consumption (~60 µW) for detecting only the peak of the ECG 

signal, i.e., the R wave. Note that full ECG features (P, QRS 

and T waves) are still crucial for accurately detecting many 

cardiac abnormalities, e.g., arrhythmias. 

  

 
(a) 

 
(b) 

Fig. 2.  Conventional architectures of sensing system. (a) Nyquist sampling with 

remote computation; (b) Nyquist sampling with local computation. 

 

 ENG signals have very sparse activity (typically <10 CAPs 

per second), but a high temporal resolution is still required. 

High redundancy will be generated, if these signals are sampled 

with convention high sampling rate Nyquist ADCs, thus leading 

to a poor system efficiency. Inspired from biology [8], the 

energy consumption of information processing and 

transportation can be significantly reduced if only the changes 

(i.e., delta) of the signal are processed, while information can 

still be recovered on the reception side with high resolution. 

One example of such a sensing system is our retina, whose 

neurons only fire when detecting temporal changes from 

photoreceptors. The action potentials fired from retina neurons 

are transmitted through an optic nerve with quite limited data 

capacity and energy budget, but our brain (the receiver of 

information) has no problem reconstructing high-quality 

images. This concept is also suitable for implantable neural 

sensing systems with very limited energy sources.  

Fig. 3(a) illustrates one example waveform of a CAP. Instead 

of processing signals with a constant clock in every frame, the 

system is active only if there are CAPs. This significantly 

reduces the data rate, and thus the requirements of the hardware 

as well as the energy consumption. Furthermore, the temporal 

feature can be well preserved, without being limited by the 

sampling grid of Nyquist ADCs. To implement such bio-

inspired sampling mentioned above, an analog to spike 

converter (ASC) based on level-crossing ADCs (LC ADC) can 

be employed to perform “delta encoding” [9], which reports (up 

or down) events when changes larger than a certain threshold 

are detected. As shown in Fig. 3(a), the ASC generates UP or 

DN pulses when the CAP signal crosses one quantization (or 

threshold) step with a positive or negative slope. This greatly 

reduces the temporal redundancy.   

   
(a)  

  
(b) 

Fig. 3. (a) Delta encoding of ENG CAPs, and its temporal features D, R, and 

H (b) The conceptual block diagram of the proposed Neuromorphic Sensing 

Systems. 

 

Fig. 3(b) shows this proposed neuromorphic sensing system 

(NSS) concept [10]. It includes an ASC for delta encoding, a 

spiking neural network (SNN) for local computation, and a 

pulse-based transmitter tailored for low-energy event-driven 

transmission. The event-based nature of the NSS not only 

improves the energy efficiency by exploiting the sparse nature 

of CAP signals, but also avoids a power-hungry system clock 
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generation and synchronization circuits. Most importantly, the 

temporal precision is no longer limited by the fixed sampling 

grid of the clock. 

The proposed NSS is designed to support dual-mode 

operation: full diagnosis and feature extraction mode. The 

capability of dual-mode operation is crucial for implantable 

sensing devices since detailed diagnosis is required in case of 

urgent situations, e.g., implant failure. When the NSS is in the 

feature extraction mode, only the extracted temporal features 

(i.e., labels) are transmitted out for energy saving, or they can 

be decoded and fedback to the implant stimulator to perform 

closed-loop neuromodulations. Fig. 3(a) shows that three 

temporal features can be extracted from CAPs, i.e., 

depolarization (D), repolarization (R) and hyperpolarization 

(H). They can be detected from the polarity and density of the 

spike trains [11].  When full diagnosis is required, the NSS 

programs the ASC to have higher precision and the pulse-based 

TX to operate at a higher event transmission rate, so that raw 

CAP signals can be transmitted in full detail.   

The rest of this article is organized as follows. Section II 

discusses the proposed architecture of NSS and its design trade-

off. Section III describes the implementation of the circuits. The 

measurement results will be shown in Section IV. Finally, 

Section V presents the conclusions. 

II. PROPOSED ARCHITECTURE AND DESIGN TRADE-OFFS 

This section discusses in detail the proposed NSS 

architecture. The design trade-off between quantization error 

and event transmission rate will also be provided. 

A. Architecture Overview 

Fig. 4 shows more detail of the proposed NSS. This work 

demonstrates two channels, which is the minimum channel 

number required for performing a conductive velocity study. 

The number of sensing channels can be easily scaled in the 

proposed NSS, based on the requirements and constrains from 

different clinical use cases.   

Two ASCs are implemented as level-crossing ADCs (LC-

ADCs). LC-ADCs perform delta encoding, so they also have 

better immunity to low-frequency noise than other event-driven 

ADCs [9].  

Four outputs of two ASCs (UP1, DN1, UP2, and DN2) are 

connected to the SNN which is only active when there are 

CAPs. Thanks to the reduced temporal redundancy, the 

memory needed for the SNN to extract the signal features and 

generate corresponding labels is reduced by 2-10×. Note that 

this memory is distributed in SNN neurons, which also reduces 

the energy required for memory access.  

In feature extraction mode, the SNN inference core can 

generate three temporal labels (D-R-H), which are then encoded 

with a serialized form of address-event representation (AER) 

[12]. The AER output is further encoded with Manchester code 

before the body channel communication (BCC) transmission, 

minimizing the residue charge in the tissue (to be detailed in 

Section III-C). 

B. System Analysis and Design Trade-offs 

To achieve the targeted temporal and amplitude resolution in 

neural recording, conventional Nyquist ADCs are typically 

designed with a high dynamic range up to 10-bit resolution and 

sampled with high frequency up to 30 kSps [13]. A large 

amount of data needs to be transferred to an external device 

wirelessly, resulting in a high data rate of up to 300 kbps each 

channel in full diagnosis mode. As reported in [14], the data 

transmission consumes more than 90% of the total system 

energy. The proposed NSS reduces the data rate by leveraging 

the sparse nature of CAP signals.  

For a Nyquist sampling system, the ADC’s clock defines the 

time stamps and thus the precise timing of the rest of the system 

(including wireless link) is not critical because the time stamps 

are already defined together with the data. However, in this 

clock-less event-based sampling system, the time stamps are set 

based on the timing of the received wireless data, i.e., time itself 

represent the time stamps, and thus timing variation in the entire 

chain affects temporal precision. The system timing resolution 

also determines the signal quality after reconstruction. The 

timing resolution can be limited by many parts of the NSS. One 

dominant limitation is the maximum event transmission rate the 

NSS can achieve, or equivalently how fast two events can be 

transmitted consecutively. If one event packet, i.e., an event 

with serial address-event representation, has a long length in 

time, the transmission of the following event must be delayed, 

which equivalently introduces a time-domain quantization 

error.  

To minimize the length of event packets (or maximize the 

event transmission rate), the bit period must be reduced. 

However, this requires a higher speed of the Pulse-BCC PA, 

which also consumes more power. To understand the relation 

between the maximum required event transmission rate and the 

signal quality after reconstruction, analysis based on a 

numerical simulation are performed and validated. In this 

analysis, a synthetic action is converted to UP/DOWN events 

  
Fig. 4. The detailed block diagram of the proposed NSS. 
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by the ASC. Note the event rate is coupled to the number of bits 

(or the quantization steps) of the ASC, i.e., finer quantization 

steps produce more events. 
 

 
Fig. 5.  Simulated SQNR versus minimum time interval between two events 

and the simulated data rate compression ratio. 

 

 Since the SNR of recorded APs in-vivo is typically limited to 

20 dB [15] due to biological noise and wide signal bandwidth, 

the target of the maximum signal-to-quantization-noise-ratio 

SQNR is set to 25 dB in this work. Based on the analysis 

provided in [16], 

𝑆𝑄𝑁𝑅 = −20𝑙𝑜𝑔10(𝛿 ∗ 𝑓𝑆𝐼𝐺) − 14.2,                   (1) 

Where  is the timing uncertainty of the event-based system; 

fSIG is the signal bandwidth, which is ~1 kHz for the nerve’s 

CAP signal. To achieve an SQNR of 25 dB, the system timing 

uncertainty should be less than 10 µs, which also sets the upper 

limit of the event packet length.  

Fig. 5 shows the relation between the required timing 

resolution and the simulated SQNR, which matches well with 

the theoretical results from Eq. (1). Fig. 5 also shows a 

simulated data rate reduction compared to conventional Nyquist 

sampling and frame-based transmission. The firing rate of CAP 

is 10 Hz, and the AER overhead has been included for the event 

transmission. It shows that the proposed NSS can achieve 

higher than 200× of data reduction, while keeping SQNR above 

25 dB.  

III. CIRCUIT IMPLEMENTATION 

Three circuit innovations will be discussed in this section: (1) 

a background offset mitigation technique is proposed to 

enhance the offset tolerance of ASCs; (2) a fully synthesized 

low-power SNN is introduced, which is capable of on-chip 

temporal feature extraction; (3) a power amplifier (PA) with 

charge balancing and AER encoder for event-driven Pulse-

based Body Channel Communication (Pulse-BCC) is 

introduced. 

A. LC ADC with the Offset Calibration 

The block diagram of the LC ADC is shown in Fig. . The 

ADC continuously monitors the input signal and generates an 

UP or DN event when the input change crosses a +1 LSB or -1 

LSB threshold, respectively. To do so, the analog input signal 

is diminished by a voltage generated by a digital-to-analog 

converter (DAC), VDAC. After the subtraction, a pre-amplifier 

amplifies the signal and two charge adders add and deduct 1 

LSB from the signal, respectively. Two continuous-time 

comparators are employed to detect when the zero-crossings 

occur. If it happens, a digital control block (Dig. Ctrl.) will 

update VDAC and wait for the next zero-crossing. 

 

 
Fig. 6.  Architecture of the LC ADC. 

 

The LC-ADC employs two comparators to actively detect 

rising and falling zero-crossings. However, the offset difference 

of these two comparators, degrades SNDR of the LC ADC. 

Therefore, a background offset mitigation technique is 

proposed and shown in Fig. . Instead of using two separate 

comparators, the first stage (pre-amp) is shared between them 

so that the offset errors of the second stage are divided by the 

pre-amp gain A. Then, a double-sampling switched-capacitor 

circuit removes the offset error e of the pre-amp and stores the 

two threshold levels (VH and VL) in three steps.  

First, the reference levels ±VLSB and the offset e are amplified 

by A and stored on capacitor C1. Second, only the amplified 

offset error e is stored on another capacitor C2 whose 

capacitance is the same as C1. Third, as the normal operation, 

C1 and C2 are connected, the offset error e is cancelled, and the 

input-referred voltage is shifted by means of the capacitors is 

±VLSB for the threshold voltages VH and VL. These operations are 

controlled by three non-overlapping signals φ1-3, which only 

toggle in the presence of UP or DN pulses. To support dual-

mode operation, the pre-amp and the comparators can be 

programmed with different power and bandwidth. 

 

 
(a) 

 
(b) 

        
(c) 

Fig. 7.  Background ASC offset cancellation at different phases: (a) reference 

store; (b) offset error store; (c) normal operation. 



 

 

B. Fully Synthesized Low-power SNN 

Conventional Neural Network (NN) architectures either 

cannot support event-driven operation [17], or use analog-

intensive neurons and synapses which are sensitive to PVT 

variations [18], and both still consume relatively high power 

(100’s of µW). In this work, a low-power and fully 

synthesizable SNN is presented, as shown in Fig. 8. To exploit 

the sparse activity of the ENG signals, the network is made self-

timed, resulting in near-zero dynamic power dissipation in the 

absence of any input activity. The SNN consists of two 

consecutive pools of fully recurrently connected spiking 

neurons and each pool contains 46 neurons.  

 

 
 Fig. 8.  Block diagram of the fully synthesizable SNN core. 

 

 
Fig. 9.  Simplified block diagram of arbiter and its waveform. 

 

These pools are followed by a fully-connected layer with 8 

neurons. A stream of spikes (digital pulses) represents the 

network inputs and outputs, whereas the synaptic weights are 

stored with 8-b digital numbers. Note that digital spiking 

neurons provide more flexibility, lower power consumption and 

low sensitivity to PVT variations, compared to charge-based 

analog spiking neurons in [18].  

Input spikes arriving at arbitrary times select a corresponding 

weight, which gets added to an accumulator. When the digital 

accumulator overflows, it produces an output spike similar to 

biological neurons’ integrate-and-fire operation. To solve 

timing collisions, each neuron has an arbiter that adds a small 

time offset (100’s of ns) to set the priority using a “Round-

Robin” polling algorithm. The simplified block diagram of the 

proposed arbiter and its waveform are shown in Fig. 9. This 

SNN is fully synthesized by the standard digital design flow. 

Since the temporal pattern of the CAP signals is important, 

the SNN needs to have a fast response time when extracting 

features. The spike arbiters determine the speed of our SNN. 

Every neuron layer contains such an arbiter. The largest one is 

at the first layer and has N=46 spike inputs. The delay Tcycle of 

the arbiter to process one spike is mainly determined by its 

embedded priority encoder. With Tgate being a typical logic gate 

delay in this technology, we found: 

𝑇𝑐𝑦𝑐𝑙𝑒 = 3 ∗ 𝑙𝑜𝑔2(𝑁) ∗ 𝑇𝑔𝑎𝑡𝑒 .                            (3) 

Then, the number of spikes per second that can be processed by 

the arbiter is 1/Tcycle. For example, in 40nm CMOS, Tgate=40 ps. 

If N=46, then Tcycle = 3*8*40 ps = 1 ns. This delay has a 

negligible impact on temporal precision.  

C. Pulse-BCC PA and Address-Event Representation (AER) 

Instead of adopting high-frequency EM radiation 

[7][19][20], body-channel communication (BCC) is adopted in 

this work for the following reasons. First, it does not require an 

antenna, so the NSS volume can be miniaturized. Second, it has 

lower propagation loss inside the human body. And third, it also 

provides better privacy since the signals do not radiate [21].  

The differential PA, as shown in Fig. 4, generates a positive 

output when OH is high and a negative signal when OL is high. 

When both OH and OL are low, the PA outputs are reset to half 

VDD, and it only dissipates 1.2µW. 

 

 
(a) 

 
(b) 

Fig.10.  (a) Output waveforms from AER and BCC-TX; (b) AER and 

Manchester coding tables from two operation modes 

 

In feature extraction mode, three temporal labels generated 

by the SNN will be coded with a serialized 3-bit AER, as 

illustrated in Fig. 10. The corresponding “address” of each label 

will be attached to the polarity of the event (either up or down), 

using a serialized 2-bit Tenary code (with “+”, “-”, and “0”). 

The AER output is further coded with Manchester coding, to 

ensure the number of “+” and “-” are always equal, which is 

AER & Manchester 

coding Table (@feature 

extraction mode) 

AER OH

D 110 +- +- +-

R 101 +- -+ +-

H 100 +- -+ -+

AER & Manchester 

coding Table (@full 

diagnosis mode) 

AER OH

UP1 011 -+ +- +-

DN1 010 -+ +- -+

UP2 001 -+ -+ +-

DN2 000 -+ -+ -+



 

 

important to ensure the charge balance. To transmit these AER 

coded labels, the differential Pulse-BCC PA either charges or 

discharges the tissue if the AER output is “+” or “-”. When the 

AER output is “0”, the reset circuit of the PA will short two 

ends of the BCC coupler and connect to half VDD, to further 

remove any residue charge in the tissue.  

According to the discussion in Section II-B, the event packet 

length should be less than 10 s to ensure that the timing 

resolution of the event-based transmission is fine enough not to 

degrade signal quality. The event packet length can be 

calculated by 

𝑇𝑝𝑎𝑐𝑘𝑒𝑡 = 𝑛 ∗ 𝑇𝑏𝑖𝑡 + 𝑇𝑟𝑒𝑠𝑒𝑡 ,                     (5) 

where n represents the number of bits for the AER and 

Manchester code (in this case is 6), Tbit is the period of each bit, 

and Treset is the time required for the reset circuit to remove the 

residue charge in the tissue. Note that Treset heavily depends on 

the strength of the reset circuit and the BCC coupler geometry, 

and it is ~4 s in this work. The Pulse-BCC PA has a 

programmable bit period in the range of 0.5-2µs.  

IV. MEASUREMENT RESULTS 

As shown in Fig. , the proposed NSS is fabricated in 40-nm 

CMOS technology and it occupies only 0.32 mm2, thanks to a 

reduced memory demand and the area-efficient Pulse-BCC.  

To evaluate the performance of the LC-ADC, a sinusoidal 

wave is set as the input. In feature extraction mode, it achieves 

30-dB SNDR with 7-µW. In full diagnosis mode, at a higher 

power of 17- µW, it achieves 72-dB SFDR and 59.5-dB SNDR 

which is shown in Fig. 5(a). Fig. 12(b) shows the simulated and 

measured SNDR with different induced comparator offsets and 

the improvement could be observed after employing a pre-

amplifier.  

 

 
Fig. 11.  Chip photo in 40nm CMOS. 

 

 
(a) 

 
(b) 

Fig. 52.  (a) Measured SNDR from ASC outputs. (b) Simulated and measured 
SNDR with different ASC comparator offset. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13 (a) Nerve CAPs recorded from intact earthworms, and the measured 
NSS input, ASC and BCC-TX outputs in full diagnosis mode with (b) 2 ms 

span, (c) 0.1 ms span. 

 

 
Fig. 14.  Measured normalized RMS error between the reconstructed CAP 

waveform based on the TX output, and the ASC input signal. 

 

The NSS is characterized with a synthetic CAP waveform 

according to our neural recordings from intact earthworm’s 

medial giant nerve fiber, as shown in Fig. 13(a), which is widely 

used approach for studying neurophysiology [22]. It is provided 

as the input signal generated by a waveform generator, with an 

amplitude matched to the ASC’s full scale and a frequency of 

~10 Hz (i.e., 10 CAPs per second). Fig. 13(b) and 13(c) show 

the outputs of the ASC and the Pulse-BCC TX outputs in full 

diagnosis mode. Fig. 13(b) shows the time domain waveform 



 

 

from the Pulse-BCC output with Manchester coded AER. The 

event packet length is measured to be ~6 s. The reconstructed 

waveform from the Pulse-BCC TX output is shown in Fig. 14, 

where the reconstruction is implemented with a simple 

accumulation without any filtering. The measured Normalized 

RMS error (NRMSE) between the input and reconstructed 

signals is 4%, and the SQNR is estimated to be 27.9 dB, which 

is close to the analysis in Section II-B.  

The measured power consumption of the SNN during the 

feature extraction is 2 µW and 11 µW for dynamic and leakage 

power, respectively. The SNN is only active when the input 

signals change substantially, leading to very low dynamic 

power. The leakage power is limited by the nanoscale 

transistors in the implemented process and can be further 

improved with advanced techniques or process [23].   

The temporal resolution is typically limited by the sampling 

period (e.g., ~33 s in [6][24]) in conventional frame-based 

sampling systems [25]. The temporal resolution in feature 

extraction mode is measured by overlaying multiple of 

extracted R labels of the CAP and measuring the timing 

uncertainty, as shown in Fig. 15. The SNN is pre-trained to 

recognize the R feature of the synthetic CAP. The measurement 

result shows that a temporal precision of 10 µs can be achieved 

with the proposed event-based NSS.  

 

  
 Fig. 15. Measured temporal precision of the extracted temporal feature R, i.e., 

peak of the CAP, by overlaying multiple measurements.    

 

 
(a) 

 
(b) 

Fig. 16.  (a) Measurement setup and the photo of the NSS module. The Pulse-

BCC measurement is performed with a 2.5-cm porcine tissue. (b) Measured 

Pulse-BCC TX input and RX output signals.  

 

Fig. 16(a) shows the setup for the evaluation of the Pulse-

BCC link. The electronic module area of the NSS, including the 

coupler of the BCC TX, is only 72 mm2. A PCB for the BCC 

receiver (RX) has been developed using commercially available 

components. A porcine tissue with 2.5-cm thickness has been 

used as the communication channel for the BCC link. Fig. 16(b) 

shows the TX input data and the received output from the RX. 

The NSS consumes only 28.2 µW and 50.5 µW system 

power in the feature extraction and full diagnosis mode, 

respectively. Currently the system power consumption is 

limited by the leakage performance of the selected process. The 

comparison with state-of-the-art electrophysiology (ECG, 

ENG) sensing and data transmission systems is shown in Table 

I. Thanks to the bio-inspired event-based sampling, the data rate 

can be reduced by 125×, while achieving 10 s temporal 

resolution. Note this compression ratio is with respect to a 30 

kSps 10-b Nyquist ADC, and a CAP firing rate of 10 Hz. 

Although adaptive sampling techniques can also achieve a 

compression ratio of 7× [7], it requires complicated and power-

hungry digital processing for mode control. Although finer 

temporal resolution can be achieved with a higher sampling 

frequency as in [20], this also leads to a higher system power 

consumption.  

The presented NSS also has smallest system module area, 

thanks to the crystal-less event-based operation and the 

antenna-less body-channel communication. All these features 

make this NSS a very promising architecture for neural sensing 

of peripheral nerves.  
 

Table I. Comparison with state-of-the-art implantable sensing system  

 

V. CONCLUSION 

This work presents a bio-inspired neuromorphic sensing 

system, including compressed sampling with delta encoding, 

event-based spiking neural network for local feature extraction, 

and an event-driven pulse-based body channel communication 

for miniaturization. This work targets the application of neural 

recording in peripheral nerve implants, which requires fine 
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temporal resolution. The analysis in Section II shows that there 

is a trade-off between event transmission rate, data compression 

ratio and the signal quality after reconstruction. The proposed 

NSS demonstrates the capability of supporting two recording 

modes: the full diagnosis mode which transmits raw sensing 

data with low power consumption, and the feature extraction 

mode which transmits only the extracted temporal feature with 

fine precision. The presented NSS architecture features high 

energy efficiency, miniature form factor, and high temporal 

resolution, making it a promising architecture for neural 

recording of peripheral nerves implants.  
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