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Abstract—A method is proposed to detect the maximum value 
of a sine wave by randomized phase sampling with subsequent 
software processing. The method is simple, meaning it does not 
require additional hardware, and works over many decades of 
frequencies which is not the case with conventional electronic 
implementations.  
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I. INTRODUCTION 
Impedance spectroscopy is the method to derive equivalent 

electronic system components from electric impedance 
measurements. It is commonly used in electrochemistry [1, 2] to 
derive surface and bulk properties of electrode-electrolyte 
systems. The same technique, although not always named as 
such, is used in specific applications to determine equivalent 
model components. Many sensors are described in terms of 
equivalent electronic components [3]. Characterization of sensor 
systems and transducers in general can be done based on 
electronic lumped element models comprising the basic 
elements of resistors, inductors and capacitors. This technique 
was first described in depth for acoustic transducers (speakers 
and microphones) by Beranek in 1954 [4]. 

With impedance spectroscopy, various AC-signals of 
different frequencies are imposed on a system, while the 
voltage-current amplitude ratio (magnitude) and phase shift are 
measured. The amplitude and phase signals are the indicators for 
the complex impedance of the system. The complex impedance 
as a function of frequency can be plotted in either a polar plot or 
a Bode diagram. The common technique of impedance 
spectroscopy is based on fitting asymptotes in the Bode diagram 
or semicircles in the polar plot. The fitted results give the circuit 
elements both in network-shape as in value. The original method 
was developed mainly by Macdonald [5] in 1987 and refined by 
Boukamp in 1995 [6]. 

From the complex function theory, we know that under 
certain circumstances there is a deterministic relation between 
the imaginary and real data (or magnitude and phase) in a single 
spectrum. Mathematically, the condition for this relation is a 
causal system. Practically it means the system is passive and 
stationary, which is true for minimum phase systems comprising 
constant resistors, capacitors and inductors without drift. This 
relation is described by the Kramers-Kronig relations, which 
state that for causal complex plane spectral data there is a 
dependency between magnitude and phase. The real part of a 
spectrum can be obtained by an integration of the imaginary part 
and vice versa as described in the Kramers-Kronig equations. 

For impedance spectroscopy this has the consequence that we 
do not have to measure both magnitude and phase [7]. 

As we will see in the next section, the measurement of both 
magnitude and phase of an electric signal can be problematic to 
implement, especially if needed over many decades of 
frequencies. This paper proposes a new method to measure the 
amplitude of sinusoidal signals which is applicable for 
impedance measurements over a wide frequency span. 

II. CONVENTIONAL AMPLITUDE MEASUREMENTS 
To measure an impedance at a single frequency, a sinusoidal 

wave function has to be imposed for the voltage, while the 
current is measured or vice versa. From the detected signal (and 
preferably for the applied stimulus signal as well), the amplitude 
and phase have to be detected. The measurement of phase and 
amplitude are two different problems. The measurement of 
phase is a timing problem which can normally be done with 
digital circuitry. The accuracy depends on the clock resolution 
and the jitter of the interfacing circuitry. The measurement of 
amplitude is an analog electronics problem. To measure the 
amplitude of a sine wave, the basal method is to use an envelope 
detector as shown in Fig. 1. The maximum voltage is copied to 

the capacitor using a diode. One problem with this elementary 
circuit is that there will always be a voltage drop of 0.7V over 
the diode. Another problem is that the R-C combination can 
never be optimized for a broad frequency range in a single 
design. 

Equipment manufacturer Keysight distinguishes six types of 
impedance measurements based on the requirements and 
conditions [8]. One of the most versatile methods for a broad 
range of frequencies is the "auto-balanced bridge" set-up where 
a known sinusoidal voltage is imposed and the current is 
measured using an I-V converter. To subsequently detect the 

 
Fig. 1. Conventional amplitude detection using an envelope detector 
requires frequency-dependent optimization of a capacitor and a resistor 

 

1

C RUin Uout



amplitude and phases of the signals, complex digital circuitry is 
used which is referred to as the "vector ratio detector section". 

The front-end circuits to do envelope detection and phase 
detection are critical and hard to design when needed over a 
large frequency range. In product implementations where 
electronics is placed around a low clock-frequency 
microcontroller we would like to keep these front-ends as simple 
as possible. 

III. THE PROPOSED METHOD 

A. Principle 
Consider a sinusoidal signal as indicated in Fig. 2 having an 

amplitude of 1. Now take ten samples from this signal at random 
phases, meaning the sample intervals are not necessarily 
equidistant.  

For the proposed method it does not matter whether these 
samples are from the same period: in fact, it is preferred to 
collect samples from multiple periods to ensure the full 0 to 2π 
phase range is uniformly sampled. The random phase sampling 
prevents the risk of sampling the same phase for all samples, so 
equidistant sampling using a sample frequency asynchronous to 
the signal frequency may suffice as well.  

When the highest value is selected from the samples, the 
probability it is close to the real maximum will be high. A 
technical boundary condition is that the analog to digital 
converter has an instantaneous sample-and-hold circuit, which 
even low-cost converters have nowadays. 

In practical implementations we have used an algorithm 
where the maximum and minimum value of the wave are 
detected from the same set of N samples. So, the complete 
envelope is detected without the need of extra samples, which 
has the additional benefit that the validity can be checked in case 
of signals symmetrical around zero. For the explanation and 
evaluation below, only detection of the maximum is taken. 

So, our assumption is that the highest value of N samples, 
sampled under the conditions mentioned above, represents the 

maximum of the signal with a small error ε. The question rises 
how many samples N we have to take to conclude the error ε is 
within a confidence interval δ of the real maximum. 

B. Statistical analysis 
In Fig. 3 part of a cosine function is drawn around the 

maximum at t = 0. With random-phase sampling we try to find 
a sample that represents the maximum amplitude of the wave.  

We define a sample that is “close enough to the maximum” 
as a sample that deviates less than δ from the top, meaning it was 
taken from the interval between ωt0 = 0 and ωt1 = cos-1(1-δ). 
With this definition we consider only half of the cosine function 
because it is symmetrical around ωt = 0.  Because we used 
random-phase sampling, all samples are uniformly distributed 
over the interval [0, π]. The probability a single sample is in the 
interval x ∈ [ωt0, ωt1] where the error ε is smaller than δ is now 
given by   

 . (1) 

Now we can calculate the probability at least one out of N 
samples is within the interval x ∈ [ωt0, ωt1]. The samples are 
again uniformly distributed, and independent. This probability 
is equal to the complementary chance all N samples are outside 
the interval [ωt0, ωt1] expressed by 

  (2) 
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Fig. 2. A sine wave with some random samples 

 

 
Fig. 3. The interval where a random sample lies within a distance δ of the 
maximum  

 



This function is plotted in Fig. 4 for δ = 0.01 and δ = 0.005. 
From this graph we can see how many samples should be taken 
to conclude with a confidence of 1.0% (dash-dot line) the largest 
sample is closer than δ to the real maximum. This is N = 100 for 
δ = 0.01 and N = 143 for δ = 0.005. 

C. Simulation 
To get a better feeling for the number of samples needed to 

find an appropriate maximum a simulation is done. In 
MATLAB, a script was written which selects random N samples 
from a full period of a sine wave. The highest value is taken as 
the estimated maximum value. This script was executed 100000 
times for each N so that the average detected values can be 
calculated. The results are in Fig. 5. 

Now we can see that the confidence of finding the maximum 
as close as δ = 0.01 is reached after N = 35 within a 2σ range. 
This simulation yields a lower number (N = 35) for the condition 
where 1% of the experiments give a larger error than δ = 0.01 
than the theoretical calculation (where N = 100).  

IV. MEASUREMENTS 
To verify whether the proposed method works, and to study 

the influence of the number of samples N further, some 
measurements were done.  

A. Measurement setup 
A sine wave of 2 kHz having an amplitude of 1 V was 

generated with a Tektronix AFG3021B function generator. On 
a Tektronix TBS2000 oscilloscope, the signal was verified to 
have a peak-peak value of 2.000 V (measurement resolution 25 
mV). Sampling was done using a National Instruments PCI-
6024E 12-bit data acquisition board, controlled and processed 
using MATLAB. 

The sampling frequency was chosen at an odd value of 1234 
Hz to avoid accidental synchronous sampling of the 2 kHz sine 
wave generator. This mimics the random-phase sampling in an 
easy way. 

B. Measurements 
Three series of experiments were done: maximum detection 

from N = 10, 35 and 100 samples respectively. For each N, 1000 
maximum estimations were taken to be represented in three 
histograms having a bin-width of 5 mV. The bin-width of 5 mV 
corresponds to an error range of 0.5% because the expected 
maximum is 1 V. The three histograms are in Fig. 6. They are 
plotted normalized: the sum of all bars for a single plot is 1. 

C. Discussion 
First of all, the most likely maximum, being the maximum 

that was detected the most, is between 1.005 V and 1.010 V. 
This means that the method tends to detect the maximum. The 
fact that it is some millivolt above the real maximum of 1 V may 
have two causes: (1) The real maximum may not be 1.000 V, but 
slightly higher because of a measurement error in the TBS2000 
oscilloscope. (2) We are detecting the maximum of sine wave 
plus additional noise – this method does not average out noise 

 
Fig. 6. The calculated probability the chosen maximum is closer than δ to 
the real maximum 

 

 
Fig. 5. Detected maximum from simulation 

 

 
Fig. 4. Detected maximum values from a sine wave with amplitude 1V 

 



in a single determination N. Both assumed errors are systematic, 
so turn up equally independent of N. 

The number of samples N = 10 is obviously too low. A 
significant number of detections is below the 0.95 V. The 
histogram for N = 10 has a dominant tail down from the real 
maximum signal value. This shape is sketched in Fig. 7a: the 
real maximum of the sine wave is 1 in this sketch. Many 
estimations are too low. 

Now we look back to the measurements in Fig. 6 for N = 35 
samples. In that case, the result is closer to a normal distribution. 
It looks like a maximum is detected on top of which normally 
distributed signal noise is present. The characteristic shape is 
sketched in Fig. 7b. The chosen number of samples is high 
enough to find a maximum, but between experiments we 
observe the random signal noise.        

Increasing from N = 35 to N = 100 samples the left tail of 
the normal distribution is copied on top of the right tail forming 
a half-normal distribution. This was seen in more experiments 
and is also visible in Fig. 6: the right-hand of the normally 
distributed bell shape is structurally above the one of lower 
values of N. The interpretation is that when going from N = 35 
to N = 100 samples, the normal distributed noise on top of the 
sine wave signal becomes subject of the maximum detection as 
well. The characteristic half-normal distribution is sketched in 
Fig. 7c. This is a phenomenon that could not yet be predicted 
with the calculation of Fig. 4 and the simulation of Fig. 5 
because these both did not have signal noise in the underlying 
model 

V. CONCLUSION 
Detection of the maximum of a sine wave shaped signal is 

successfully validated using a new method based on statistics. 
The method is suitable in impedance measurement applications 
where detection of the phase is not of primary interest. The 
advantage is that the signal amplitude can be detected over many 
decades of frequencies. Therefore, simple low rate sampling can 
be used, so the method can be implemented in simple 
microcontrollers. For sine waves, the theory predicts than N = 
100 are enough samples to detect the maximum with a precision 
of 1%. Simulations and measurements show that taking less 
samples, for example N = 35, still gives a reliable result, and is 
even favorable because signal noise is still visible in the detected 
maximum. 

In the presented results, sufficient randomization on the 
sampling was done to guarantee a sampling that is asynchronous 
with this signal. Future work must be done on the mathematical 
conditions behind this method. To be more specific, the relation 
between the sample taking and the expectation value of the 
estimated maximum is not yet understood. In addition, the 
relation between the optimum number of samples N and the 
signal noise was only optimized by simulations and not by an 
explicit expression.       
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Fig. 7. Three different frequency of occurrence distributions functions for 
the detected maximum values. [a] N is too low, [b] N is correct, [c] N is 
unneccesarily high 
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