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Abstract—A method is proposed to detect the maximum value
of a sine wave by randomized phase sampling with subsequent
software processing. The method is simple, meaning it does not
require additional hardware, and works over many decades of
frequencies which is not the case with conventional electronic
implementations.
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1. INTRODUCTION

Impedance spectroscopy is the method to derive equivalent
electronic system components from electric impedance
measurements. It is commonly used in electrochemistry [1, 2] to
derive surface and bulk properties of electrode-electrolyte
systems. The same technique, although not always named as
such, is used in specific applications to determine equivalent
model components. Many sensors are described in terms of
equivalent electronic components [3]. Characterization of sensor
systems and transducers in general can be done based on
electronic lumped element models comprising the basic
elements of resistors, inductors and capacitors. This technique
was first described in depth for acoustic transducers (speakers
and microphones) by Beranek in 1954 [4].

With impedance spectroscopy, various AC-signals of
different frequencies are imposed on a system, while the
voltage-current amplitude ratio (magnitude) and phase shift are
measured. The amplitude and phase signals are the indicators for
the complex impedance of the system. The complex impedance
as a function of frequency can be plotted in either a polar plot or
a Bode diagram. The common technique of impedance
spectroscopy is based on fitting asymptotes in the Bode diagram
or semicircles in the polar plot. The fitted results give the circuit
elements both in network-shape as in value. The original method
was developed mainly by Macdonald [5] in 1987 and refined by
Boukamp in 1995 [6].

From the complex function theory, we know that under
certain circumstances there is a deterministic relation between
the imaginary and real data (or magnitude and phase) in a single
spectrum. Mathematically, the condition for this relation is a
causal system. Practically it means the system is passive and
stationary, which is true for minimum phase systems comprising
constant resistors, capacitors and inductors without drift. This
relation is described by the Kramers-Kronig relations, which
state that for causal complex plane spectral data there is a
dependency between magnitude and phase. The real part of a
spectrum can be obtained by an integration of the imaginary part
and vice versa as described in the Kramers-Kronig equations.

Jo Theunissen
Department of Mathematics and
Computer Science
Technical University of Eindhoven
Eindhoven, The Netherlands
j-g-a.theunissen@tue.nl

André Dommels
Department of Engineering Physics
Fontys University of Applied Sciences
Eindhoven, The Netherlands
a.dommels@fontys.nl

For impedance spectroscopy this has the consequence that we
do not have to measure both magnitude and phase [7].

As we will see in the next section, the measurement of both
magnitude and phase of an electric signal can be problematic to
implement, especially if needed over many decades of
frequencies. This paper proposes a new method to measure the
amplitude of sinusoidal signals which is applicable for
impedance measurements over a wide frequency span.

II. CONVENTIONAL AMPLITUDE MEASUREMENTS

To measure an impedance at a single frequency, a sinusoidal
wave function has to be imposed for the voltage, while the
current is measured or vice versa. From the detected signal (and
preferably for the applied stimulus signal as well), the amplitude
and phase have to be detected. The measurement of phase and
amplitude are two different problems. The measurement of
phase is a timing problem which can normally be done with
digital circuitry. The accuracy depends on the clock resolution
and the jitter of the interfacing circuitry. The measurement of
amplitude is an analog electronics problem. To measure the
amplitude of a sine wave, the basal method is to use an envelope
detector as shown in Fig. 1. The maximum voltage is copied to

Fig. 1. Conventional amplitude detection using an envelope detector
requires frequency-dependent optimization of a capacitor and a resistor

the capacitor using a diode. One problem with this elementary
circuit is that there will always be a voltage drop of 0.7V over
the diode. Another problem is that the R-C combination can
never be optimized for a broad frequency range in a single
design.

Equipment manufacturer Keysight distinguishes six types of
impedance measurements based on the requirements and
conditions [8]. One of the most versatile methods for a broad
range of frequencies is the "auto-balanced bridge" set-up where
a known sinusoidal voltage is imposed and the current is
measured using an I-V converter. To subsequently detect the



amplitude and phases of the signals, complex digital circuitry is
used which is referred to as the "vector ratio detector section".

The front-end circuits to do envelope detection and phase
detection are critical and hard to design when needed over a
large frequency range. In product implementations where
electronics is placed around a low clock-frequency
microcontroller we would like to keep these front-ends as simple
as possible.

III. THE PROPOSED METHOD

A. Principle

Consider a sinusoidal signal as indicated in Fig. 2 having an
amplitude of 1. Now take ten samples from this signal at random
phases, meaning the sample intervals are not necessarily
equidistant.
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Fig. 2. A sine wave with some random samples

For the proposed method it does not matter whether these
samples are from the same period: in fact, it is preferred to
collect samples from multiple periods to ensure the full 0 to 2n
phase range is uniformly sampled. The random phase sampling
prevents the risk of sampling the same phase for all samples, so
equidistant sampling using a sample frequency asynchronous to
the signal frequency may suffice as well.

When the highest value is selected from the samples, the
probability it is close to the real maximum will be high. A
technical boundary condition is that the analog to digital
converter has an instantaneous sample-and-hold circuit, which
even low-cost converters have nowadays.

In practical implementations we have used an algorithm
where the maximum and minimum value of the wave are
detected from the same set of N samples. So, the complete
envelope is detected without the need of extra samples, which
has the additional benefit that the validity can be checked in case
of signals symmetrical around zero. For the explanation and
evaluation below, only detection of the maximum is taken.

So, our assumption is that the highest value of N samples,
sampled under the conditions mentioned above, represents the

maximum of the signal with a small error €. The question rises
how many samples N we have to take to conclude the error € is
within a confidence interval 6 of the real maximum.

B. Statistical analysis

In Fig. 3 part of a cosine function is drawn around the
maximum at t = 0. With random-phase sampling we try to find
a sample that represents the maximum amplitude of the wave.
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Fig. 3. The interval where a random sample lies within a distance 3 of the
maximum

We define a sample that is “close enough to the maximum”
as a sample that deviates less than 6 from the top, meaning it was
taken from the interval between wto = 0 and wti = cos™'(1-).
With this definition we consider only half of the cosine function
because it is symmetrical around ot = 0. Because we used
random-phase sampling, all samples are uniformly distributed
over the interval [0, t]. The probability a single sample is in the
interval X € [wto, ot1] where the error € is smaller than 3 is now
given by

p(z(8)]|e<d) = wiy ;wto _ cos—17(r1 —5) N

Now we can calculate the probability at least one out of N
samples is within the interval x € [wto, wti]. The samples are
again uniformly distributed, and independent. This probability
is equal to the complementary chance all N samples are outside
the interval [oto, oti1] expressed by

p(x () |e<o,N)=1-p(x(d)[e>5N)

21—(p(l‘((5)|6>6))N (2)

which results in
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Fig. 6. The calculated probability the chosen maximum is closer than 8 to
the real maximum

This function is plotted in Fig. 4 for 8 = 0.01 and 6 = 0.005.
From this graph we can see how many samples should be taken
to conclude with a confidence of 1.0% (dash-dot line) the largest
sample is closer than 6 to the real maximum. This is N = 100 for
8 =10.01 and N = 143 for & = 0.005.

C. Simulation

To get a better feeling for the number of samples needed to
find an appropriate maximum a simulation is done. In
MATLAB, a script was written which selects random N samples
from a full period of a sine wave. The highest value is taken as
the estimated maximum value. This script was executed 100000
times for each N so that the average detected values can be
calculated. The results are in Fig. 5.

Now we can see that the confidence of finding the maximum
as close as & = 0.01 is reached after N = 35 within a 2c range.
This simulation yields a lower number (N = 35) for the condition
where 1% of the experiments give a larger error than 6 = 0.01
than the theoretical calculation (where N = 100).
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Fig. 4. Detected maximum values from a sine wave with amplitude 1V

IV. MEASUREMENTS

To verify whether the proposed method works, and to study
the influence of the number of samples N further, some
measurements were done.

A. Measurement setup

A sine wave of 2 kHz having an amplitude of 1 V was
generated with a Tektronix AFG3021B function generator. On
a Tektronix TBS2000 oscilloscope, the signal was verified to
have a peak-peak value of 2.000 V (measurement resolution 25
mV). Sampling was done using a National Instruments PCI-
6024E 12-bit data acquisition board, controlled and processed
using MATLAB.

The sampling frequency was chosen at an odd value of 1234
Hz to avoid accidental synchronous sampling of the 2 kHz sine
wave generator. This mimics the random-phase sampling in an
easy way.

B. Measurements

Three series of experiments were done: maximum detection
from N =10, 35 and 100 samples respectively. For each N, 1000
maximum estimations were taken to be represented in three
histograms having a bin-width of 5 mV. The bin-width of 5 mV
corresponds to an error range of 0.5% because the expected
maximum is 1 V. The three histograms are in Fig. 6. They are
plotted normalized: the sum of all bars for a single plot is 1.

C. Discussion

First of all, the most likely maximum, being the maximum
that was detected the most, is between 1.005 V and 1.010 V.
This means that the method tends to detect the maximum. The
fact that it is some millivolt above the real maximum of 1 V may
have two causes: (1) The real maximum may not be 1.000 V, but
slightly higher because of a measurement error in the TBS2000
oscilloscope. (2) We are detecting the maximum of sine wave
plus additional noise — this method does not average out noise
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Fig. 7. Three different frequency of occurrence distributions functions for
the detected maximum values. [a] N is too low, [b] N is correct, [c] N is
unneccesarily high
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in a single determination N. Both assumed errors are systematic,
so turn up equally independent of N.

The number of samples N = 10 is obviously too low. A
significant number of detections is below the 0.95 V. The
histogram for N = 10 has a dominant tail down from the real
maximum signal value. This shape is sketched in Fig. 7a: the
real maximum of the sine wave is 1 in this sketch. Many
estimations are too low.

Now we look back to the measurements in Fig. 6 for N =35
samples. In that case, the result is closer to a normal distribution.
It looks like a maximum is detected on top of which normally
distributed signal noise is present. The characteristic shape is
sketched in Fig. 7b. The chosen number of samples is high
enough to find a maximum, but between experiments we
observe the random signal noise.

Increasing from N = 35 to N = 100 samples the left tail of
the normal distribution is copied on top of the right tail forming
a half-normal distribution. This was seen in more experiments
and is also visible in Fig. 6: the right-hand of the normally
distributed bell shape is structurally above the one of lower
values of N. The interpretation is that when going from N = 35
to N = 100 samples, the normal distributed noise on top of the
sine wave signal becomes subject of the maximum detection as
well. The characteristic half-normal distribution is sketched in
Fig. 7c. This is a phenomenon that could not yet be predicted
with the calculation of Fig. 4 and the simulation of Fig. 5
because these both did not have signal noise in the underlying
model

V. CONCLUSION

Detection of the maximum of a sine wave shaped signal is
successfully validated using a new method based on statistics.
The method is suitable in impedance measurement applications
where detection of the phase is not of primary interest. The
advantage is that the signal amplitude can be detected over many
decades of frequencies. Therefore, simple low rate sampling can
be used, so the method can be implemented in simple
microcontrollers. For sine waves, the theory predicts than N =
100 are enough samples to detect the maximum with a precision
of 1%. Simulations and measurements show that taking less
samples, for example N = 35, still gives a reliable result, and is
even favorable because signal noise is still visible in the detected
maximum.

In the presented results, sufficient randomization on the
sampling was done to guarantee a sampling that is asynchronous
with this signal. Future work must be done on the mathematical
conditions behind this method. To be more specific, the relation
between the sample taking and the expectation value of the
estimated maximum is not yet understood. In addition, the
relation between the optimum number of samples N and the
signal noise was only optimized by simulations and not by an
explicit expression.
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