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Abstract

A method for determining separate ion concentrations using a conductivity sensor was

developed and tested. While a single electrical conductivity measurement in a solution

does not give information on the present ion types, a range of measurements at various

electrolyte temperatures does. Since the temperature dependency of the mobility of an

ion is unique for that ion, it appeared to be possible to fit ion concentrations from a set

of conductivity measurements while heating the electrolyte.

For the calculation of the ion concentrations from a conductivity versus temperature

sweep, an estimation algorithm is introduced based on the linear minimum mean

square of the error. Errors in the measured conductivity will propagate through the

algorithm into errors in the fitted ion concentrations. For the validation of the

estimation method, this propagation of errors is also evaluated.

The example given merely shows the feasibility of obtaining specific concentration

information from an intrinsically non-specific type of measurement, electrolyte

conductivity, by using the unique temperature dependence of ionic mobility.
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1. Introduction

A single conductivity measurement is not interesting unless the measured value is

normalised for temperature. The reason for this is that at a higher temperature, ions

become more mobile and will cause an increase in conductivity. So with the same

concentration, an increase in temperature results in an increase in conductivity.

Therefore, in practical conductivity measurements, the measured conductivity is

compensated to 25°C by using a simultaneous temperature measurement.

The total conductivity of an electrolyte expressed in terms of the limiting molar

conductivities of the separate ions is given by

Λ =
=
∑ z c TL L L
L

,

λ ( )
�

(1)

with zi the charge of ion i, ci the concentration, I the number of different types of ions

and λi(T) the limiting molar conductivity of ion i. This last one is dependent on

temperature and specific for every single ion. Since a conductivity measurement can

not differentiate between ions, it is not possible to eliminate exactly the temperature

effect.

Industrial temperature compensation methods use the average temperature dependency

of Λ which is about 2%/°C. This linear fit is the most simple approximation of the

temperature dependency and is suitable for most pure water applications over a

moderate temperature range [1]. More sophisticated fits compensate by using a third

order polynomial, but this method is electrolyte and concentration dependent [2].
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An even more complicated temperature compensation can be based on a polynomial

fit for the limiting molar conductivities of the separate ions [3]. A third order

approximation was proposed by Harned and Owen [4] and tabulated for several ions.

The equation is

( ) ( ) ( )[ ]λ λL L L L LT k T k T k T( ) � � �= + − + − + −�
� �

�
�

�1 25 25 25 (2)

with λi0 the limiting molar conductivity of ion i at 25°C. This polynomial approach

will be used for ion identification.

2. Theory

The generalised polynomial fit of order J with respect to temperature T0 can be written

as

( )λ λL L L M

M

M

-

T k T T( ) �= −
=
∑�

�
�

. (3)

Together with equation (1) the total conductivity of an electrolyte having I types of

ions can now be calculated:

( ) ( )Λ T z c k T TL L L L M
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Manipulation yields:
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For conductivity measurements at N different temperatures, I types of ions and a

polynomial fit of order J, a matrix equation can be formed using equation (5):
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(6)

or

Λ = ⋅ ⋅T K c .

The meaning of the terms is:

Λ Vector containing measured conductivities at N different temperatures;

T Matrix with the temperature information;

K Matrix with the polynomial coefficients ki,j;

c Vector with the ion concentrations multiplied by the parameters |z|·λi
0;

The question rises whether it is possible to calculate the vector c (containing the

concentration information) from a known T matrix and a measured Λ vector. It

would be interesting to know if the K matrix can be calculated as well. This would

mean that the present ions can be identified by their found ki,j coefficients. However,

the calculation of the K matrix is mathematically not possible since this requires a

known vector c , while the determination of this vector is the desired result. Therefore,

equation (6) can only be used for determining ion concentrations after assuming a set

of coefficients in the matrix K .
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2.1 Calculation of ion concentrations using tabulated coefficients

When the K matrix is assumed to be known, which implies a chosen set of ions,

equation (6) can be written as
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where the T K⋅ matrix is written as a single one. The elements in this matrix are

polynomials for the n-th temperature (rows) and the i-th ion (columns). If the T K⋅

matrix has an inverse, the concentrations will follow from

( )c T K= ⋅ ⋅
−�

Λ . (8)

The first condition for having an inverse is that the matrix is square, so the minimal

number of necessary experiments is equal to the number of ions to fit ( N I= ). For N

larger than I an estimator must be used. The second condition is that the determinant

is not equal to zero. This is true when the coefficients are different for every ion and

the order of the polynomial is equal or larger than I - 1.

Summarising, it is possible to find the concentrations of individual ions in a solution

under the following conditions:

• The measured conductivity scan must be a linear combination of the temperature

responses for the individual ions. This means that
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→ Every ion which is significantly present in the electrolyte conductivity must be

represented in the calculations;

→ No two ions may have the same temperature dependency (which will probably

never be the case);

→ When I types of ions have to be calculated, the conductivity of the electrolyte

must be measured at at least N = I temperatures;

→ The order of the used polynomials is equal to or larger than the number of

different ions to fit minus one (J = I - 1);

• The coefficients ki,j of the individual ions must be known. The coefficients for the

third order fit are given by Harned and Owen [4] for nine types of ions;

When these conditions are met, the errors in the fitted ion concentrations will be the

result of errors in the measured conductivities. The nature of propagation of an error

in the measured conductivity to an error in the fitted result depends on the type of the

error.

2.2 Error propagation

Three types of errors are considered: errors proportional to the measured conductivity,

errors which manifest as a constant offset in the measured conductivity and random

noise.

Errors due to systematic errors in conductivity measurements, for example due to an

inaccurately assumed sensor slope, representing the sensitivity, can be proportional to

the measurand itself. Proportional errors can be written as an undesired multiplication

of Λ by ξ. For such proportional errors, equation (8) must be expanded to
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( )c T Kξ = ⋅ ⋅
−�

Λξ (9)

where Λ is multiplied per element by the proportional error vector ξ . When ξ is

equal for every single measurement, this results in

( )c T K cξ ξ ξ= ⋅ ⋅ ⋅ = ⋅
−�

Λ . (10)

From this equation it can be concluded that an x per cent error in the measured

conductivity will result in an x per cent error in the calculated ion concentrations.

Other types of errors might introduce a constant offset in the conductivity

measurement. The most likely origin of such an error is the unexpected presence of an

ion which is not included in the fitting algorithm. In that case, the observed

conductivity versus temperature curve can never be a linear combination of the

contributions due to the assumed set of ions. Therefore, this kind of error will be

much more severe than a proportional error. Such a systematic error which manifests

as an unknown offset in the measurement can be written as a constant addition ε of Λ.

In this case equation (8) becomes

( ) ( )c T Kε ε= ⋅ ⋅ +
−�

Λ (11)

and manipulation yields

( ) ( ) ( )c T K T K c T Kε ε ε= ⋅ + ⋅ = + ⋅
− − −� � �

Λ (12)

which shows that the faulty fitted vector c ε is equal to the actual vector c increased

by a constant vector. So the error vector ε will result in unknown additions to all the

elements of c , which are different for every element.
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Random noise in the measurement shows up as unknown offsets as well, like

described in equation (12). However, the error vector c cε − has another property

now: its elements represent random numbers with the average of zero. In other words,

when the number of experiments is increased, the average of the elements in c cε −

will go to zero. In the next subsection, an estimation algorithm is introduced which

allows N > I in order to reduce the error due to random noise in the conductivity

measurement.

2.3 A linear minimum mean square estimation

The calculation of ion concentrations using the basic algorithm (8) requires

conductivity measurements at as much temperatures as the number of ions to be fitted.

It is more accurate to do more measurements (N > I) and use an estimation method.

The method introduced here is a matrix based algorithm for minimising the mean

square error of the estimation [5]. Consider the generalised system

Λ = ⋅ +B c v (13)

with

Λ the vector containing the observations,

B a matrix representing the system (in this context equal to T K⋅ ),

c the input vector to be estimated and

v the noise or error in the measurement.

The aim is to find an estimate oc for the vector c satisfying the observed vector Λ . In

the ideal case, the estimate is equal to the true value. In practice, however, an error

will be present represented by the error vector, defined as
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( )e c c c E c= − = −o o o . (14)

The aim of the estimation algorithm is to minimise this error vector. Concerning the

system of equation (13), consider the assumptions:

→ c and v are uncorrelated (the moment matrix ( )C E cvFY
7≡ is equal to zero);

→ the elements of v are uncorrelated and have equal standard deviations σv. This

also implies that the moment matrix ( )C E vvY
7≡ is finite;

→ the true value of c is unknown so its moment matrix satisfies ( )C E ccF
7≡ → ∞

(all variances are very large).

The linear minimum mean square estimate oc of c given data Λ under these

conditions is according to Gauss-Markoff theorem equal to [5]

( )oc B B B7 7= ⋅
−�

Λ (15)

which reduces to (8) for a square matrix B .

The propagation of errors was already mentioned in subsection 2.2 for the situation

where the number of applied temperatures is equal to the number of ions to be fitted

(N = I). However, by using more than N measurements, a decrease in the final error

can be expected because of suppression of measurement noise. The Gauss-Markov

theorem does also give a method for determining the propagation of errors through the

estimation algorithm. Using the assumed equal variances σv
2 of the vector v , the

moment matrix of the error vector given by equation (14) can be expressed as

( )C B BH
7

Y= ⋅
−�

�σ (16)
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which contains all covariances of the fitted vector oc in its entries. So the numbers on

the diagonal of this error matrix are the variances of the fitted parameters. Using this

knowledge, the standard deviation of the whole fit can be defined as

( )σ σF
7

Ytrace B B= ⋅
−�

(17)

where the trace function is the summing of the elements on the diagonal of a matrix.

The standard deviation is determined for the Radiometer CDM210 conductivity meter

to be about 0.5 mS/cm in the 400 mS operational range, and 0.05 mS/cm in the 40 mS

range, as will be shown in the experimental part.

In figure 1 the normalised calculated standard deviation in the estimated concentration

is represented for three different temperature ranges and estimations for N = 2 to 11.

For this numerical example, the coefficients ki,j for a 100 mM sodium chloride

solution are used. It can be seen that the accuracy of the estimation can be increased,

either by increasing the number of measurements or the temperature range. The

improvement in accuracy by increasing the temperature range is larger than the

improvement obtained by using more measurements. More practically, in order to fit I

ions, the improvement in accuracy is marginal if the number of measurements N is

much larger than 2⋅I. However, the accuracy of the estimated concentration (expressed

in its normalised standard deviation) is more or less proportional to the chosen

temperature range, making maximisation of this range, up to practical limits,

worthwhile.

2.4 Implementation of the zero charge boundary condition

Because in practical solutions the total charge is equal to zero, the condition
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can be implemented in the algorithm in order to increase accuracy and to avoid useless

answers like negative concentrations. This equation can be implemented in the model

(7) as
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were the T K⋅ matrix has now become an augmented T K⋅ matrix. The elements in

the augmented vector Λ and the augmented matrix T K⋅ do not have an equal unity

anymore. This does not make any difference for numerical evaluations.

This augmented model can be evaluated like the original model using the same

estimation algorithm. However, the condition (18) will have the same priority as every

single measurement and so its importance will be suppressed with an increasing

number of applied temperatures N. Two options are available for increasing its

priority:

• The first option is to give the last row of the augmented T K⋅ matrix a weight

factor equal to the number of measurements. The weighted least square form of

(15) is [5]

( )oc B W B B W7 7= ⋅−
−

−�
�

� Λ (20)



12

with W the weight matrix. This weight matrix is of size (N+1) × (N+1) with on

the diagonal the only non-zero entries being the weight factors. Since the matrix

B will be the augmented T K⋅ matrix, the element on entry (N+1, N+1) will be

the weight factor for the zero charge condition;

• Another possibility is obtained by first reducing the measured information and

then implementing the zero charge condition. Concerning equation (6) it can be

concluded that the number of measurements is not in the K c⋅ product matrix.

The measured information (conductivities at N temperatures) can be reduced to

J+1 points by first calculating an estimation for the vector K c⋅ by applying the

simple algorithm (15) to equation (6) according to

( )K c T T T
(VWLPDWH

7 7⋅ = ⋅
−�

Λ . (21)

The result is a vector with length J+1, not dependent on the number of

measurements. This estimated vector is equal to the product of the coefficient

matrix K and the concentration vector c . The zero charge condition can now

again be implemented by augmenting a matrix:
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To solve the concentrations from this equation, a second estimation step is

necessary since the augmented K matrix is not square.

The moment matrix of the error vector (16) has now become meaningless, and so the

standard deviation of the fit (17), since these are only valid when having equal
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variances σv
2 for all the measurements. The variances are not equal anymore, since the

zero charge condition will have another variance than the actual conductivity

measurements.

There are no reasons to clearly prefer one of the two mentioned options for increasing

the priority of the zero charge condition. In section 4 of this paper, the second

mentioned option (equation (22)) is implemented.

2.5 Summary

Reconsidering the original equation (7), describing the set of conductivity

measurements at N temperatures, the ultimate method of determination should be:

• Perform the measurements, by heating a solution while measuring the

conductivity. Take more measurements (conductivities at known temperatures)

than the number of ions to be fitted (N > I) since this will increase the accuracy of

the estimation. This increase, however, is marginal if N >> 2I. Some conductivity

meters have an automatic temperature compensation which must be switched off.

Also the use of an auto range function will disturb the measurement since the

variance in the measurement appeared to be constant per operational range;

• Assume a set of ions and calculate the matrix B with the elements

( )B k T TQ L L M Q

M

M

-

� �= −
=
∑ �

�

with T0 the reference temperature, Tn the temperature of measurement n, J the

order of the polynomial fit and ki,j the polynomial fit coefficients for the

temperature dependency of the mobilities (which can be found in literature [4]);

• Create the conductivity vector Λ , which is a column of N conductivity

measurements at N different temperatures;
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• Use equation (15) for finding the estimation vector oc , which is a column of the

|zi|ci·λi
0 products for the I ions. Because the charge of the ions zi and the limiting

molar conductivity λi
0 are known, the concentrations of the individual ions can be

calculated.

If desired, the boundary condition of the sum of all charge being zero can be

implemented as shown in equation (22). However, in that case this condition is

mathematically included as a weighted criterion.

3. Experimental verification of the estimation assumptions and a quantitative

determination of the fitting errors

Before the actual measurements for fitting are presented, the assumptions which

justify the simplification to the estimation algorithm (15) are verified by

measurements. The used set-up is the same as will be used later for doing the actual

concentration determinations. The data needed for the verification are numerical data

on the standard deviations of the conductivity measurements. These results can also be

used to evaluate the propagation of errors (as given by equation (17) in terms of

standard deviations) quantitatively.

3.1 Measurement set-up

During some hours, the conductivity meter (Radiometer CDM 210) was used for

monitoring temperature and conductivity in stirred potassium chloride solutions. The

solution was heated and cooled down several times between room temperature (18oC)

and about 55oC. In a spreadsheet program, the data was collected and compared to the

theoretical conductivities for these temperatures. The results are in table 1.
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Notice that the conductivity meter had to be switched to the 40 mS range for the first

sample which corresponds to a fixed operational frequency of 23.4 kHz, and to the

400 mS range for the other three samples (46.9 kHz). Obviously, the standard

deviation is dependent on the chosen operational frequency and not on the electrolyte

concentration. However, because the operational frequency is chosen according to the

electrolyte concentration, the standard deviation is indirectly dependent on this

concentration in practical applications.

All the measured errors of the three samples measured with the 400 mS range were

collected into a single error distribution plot as shown in figure 2 which approaches

the normal distribution shape, at least visually.

3.2 Discussion

Verification of the assumptions

Having this data, the assumptions preceding equation (15) can be verified. Comparing

column 4 to column 2 in table 1, it appears that the mean of the error is much lower

than the observed conductivities. In other words

( )E v = 0

which implies directly that the covariance with c is equal to zero as well:

( )C E cvFY
7≡ = 0 .

This proves the first assumption of c and v being uncorrelated.

The other two conditions, being Cc → ∞  and CY is finite,  are necessary to ensure

that the moment matrix for c is much larger than the moment matrix for v :
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C Cc v>> . Since the standard deviations of v are finite and known (fifth column of

table 1), its moment matrix will be small. More correctly, the moment matrix for v

will go to zero in relation to the corresponding moment matrix for c , which will go to

infinite because its covariance goes to infinite [5].

The value for the standard deviation appears to be constant at a chosen operational

frequency. This means that about 95% of the conductivity measurements is between

the real conductivity plus/minus two times this standard deviation for the chosen

operational range.

Besides being dependent on the operational frequency of the conductivity meter, the

standard deviation might be dependent on temperature. Therefore the data of the three

measurements in the 400 mS range, was split into four sets: lower than 30°C, between

30°C and 40°C, between 40°C and 50°C and higher than 50°C. The calculated

standard deviations are in table 2.

Although there is a small temperature dependency, it might be concluded that no big

error is introduced when assuming a temperature independent standard deviation.

The absolute errors in the concentration estimation

Now the variance in the measurement error is experimentally determined, the

propagation of this error through the estimation algorithm can be evaluated. The

absolute errors in the fitted concentrations due to random noise can be calculated

using equation (17). This equation gives the standard deviations in the fitted vector oc

which contains the values |z|c λi
0 for all the fitted ions. So, when the error of a certain
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value is defined by two times its standard deviation (95% probability region), the

resulting absolute error in the fitted ion concentration will be

( )e
z

B BF L
Y

L L

7

L L
�

�
=

−2
�

�σ
λ

(23)

with

ec,i the absolute error in the fitted ion concentration for ion i

[10-3 mole/litre];

zi the ionic charge for ion i [no dimension];

λi
0 the limiting molar ionic conductivity [m2 S mole-1];

B the matrix with the temperatures and coefficients ki,j;

σv the standard deviation in the measured conductivity [S/m];

Evaluation of equation (23) is easier with some numerical examples. When the

conductivity meter is used in the 40 mS/cm range, which is equivalent to a maximum

of about 300 mM KCl, the standard deviation of the measurement is approximately

equal to 0.05 mS/cm as given in table 1. For N = 25 measurements, equidistantly

distributed over a temperature range from 20°C to 55°C and using a polynomial

approximation of J = 3 for the ion conductivities, the absolute errors in the fitted

concentrations are calculated. In table 3, the results are summarised for combinations

of two, three and four selected ions.

On the average, the fitting of a larger number of ions increases the random noise

propagation error. What can also be seen, is that the type of ion does matter. When the

combination Cl- and K+ is present, the errors are bigger. In addition, the result for H+

is more accurate, not only in the result for H+ itself, but also for the other ions in the
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system. This could be expected since H+ has a much more characteristic ionic

conductivity and therefore ion discrimination is more easy.

Since table 3 is only valid when the meter is switched in the 40 mS/cm range, errors

in the concentrations around the one molar limit will certainly exceed the actual

concentrations. So the fitting of four ions will probably be much too sensitive to

errors.

Remarkable is that the absolute error is not dependent on the concentration, which is

the result from the constant standard deviation of the conductivity measurement. So it

is important to choose the lowest possible conductivity sensing range on the meter

since than the standard deviation is the lowest as can be seen from table 1.

For errors in the measured conductivity which have not a random nature, the noise

will not be filtered out by the estimation algorithm. An example which was already

mentioned in subsection 2.2 is the presence of a background electrolyte, consisting of

one or more ions which are not in the assumed set of ions.

When the error ε is assumed to be constant at every temperature, the relative error in

the fitted concentration of ion i becomes
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(24)

where equation (12) is used and for simplicity N = I is taken. When later N > I is

needed, the inverse of the T K⋅ matrix can simply be substituted by the estimation

matrix of equation (15). The elements in the measured conductivity vector Λ can be
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normalised to the conductivity at for example 200C. The relative error in the fitted

concentration becomes equal to
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which means that the relative error in the fitted ion concentrations is proportional to

the relative error due to an offset in the measured conductivity. In table 4 the factors

which amplify the relative error in the measurement to relative errors in the fit are

given for the same solutions as used in table 3. However, while the concentrations did

not matter for the errors due to random noise, now concentrations must be assumed in

order to find numerical values.

An entry in this table means that when estimating for example K+ in a 10 mM KCl

solution, a one percent offset in the measured conductivities will result into an 38%

error in the fitted concentration.

Some remarks can be made. The error in the fitted H+ concentration does not escalate

excessively, but the error amplification seems to remain lower than ten. A factor ten

means that for a 5% error in the fit, a 0.5% error in the measured conductivity is

allowed. Roughly speaking, the allowed ”background” normality may therefore not

exceed 0.5% of the concentration of interest.

The real problem with this type of error is that it is unpredictable. For example the

amplification of errors can range from 0.6 to 206. Without knowing, a small error due

to a contamination in the system will be enormously amplified. The maximum

amplification which is empirically found here is 206. Although it is not guaranteed

that no larger amplifications will be observed in other systems, a rough estimation of
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the possible detection limit of ions in demi water is possible. Using demi water with a

purity of 0.5 µS/cm, for a 5% error in the fitted ion concentrations a conductivity of

2.0 mS/cm is the lower limit. This is equivalent to for example a 15 mM KCl solution.

So when trying to fit the ion concentration in solutions with a lower concentration, the

impurity of the demi water might already disturb the estimation.

4. Some experimental examples of ion fitting

The fitting theory was tested for electrolytes having only three types of ions. The

reason is that in a two ion system the separate concentrations are already determined

by a single conductivity measurement, while on the other hand the fitting of four ion

types would probably be too sensitive to errors considering the previous subsection. It

should be pointed out that the given examples are merely meant to demonstrate the

feasibility of the proposed method.

4.1 Measurement set-up

The presented theory is verified using a Radiometer CDM210 commercial

conductivity meter in a computer controlled set-up as shown in figure 3. This meter is

capable of measuring conductivity, using a four points electrode (type Radiometer

CDC565), and the solution temperature (using a Radiometer temperature probe type

T201). For this measurement, the automatic temperature compensation of the

CDM210 must be switched off, and the automatic measurement range adaptation as

well. Each measurement starts at room temperature. After a heating and stirring step,

an equilibrium time of 5 seconds is used before measuring. This sequence is repeated

until the temperature exceeds 55ºC.
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The protocol is controlled by LabView 3.1 software, providing the user with an

interactive interface. First the user is asked to prepare a solution and place it on the

heater. The program switches on the heater and measures the conductivity

equidistantly over the given range. After the measurement has finished, a dialogue box

asks to select the ions which are present in the solution. In a result window, the

measured curve, the fitted curve and fitted ion concentrations are presented to the

user.

The implementation of the estimation algorithm, both for the normal and the zero

charge case, is also done in LabView. The parameters for equation (2) are taken from

Harned and Owen [4].

4.2 The measurements

Figure 4 shows a series of conductivity measurements in a solution of 10 mM HCl and

25 mM NaCl while the solution was heated and stirred as described. As an illustration,

a fitted third order polynomial is plotted as well. It is this polynomial which is a linear

combination of the polynomials for H+, Na+ and Cl-.

By taking the measured conductivities at 29.2, 37.2 and 53.0°C, equation (7) becomes
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from which the fitted concentrations are:

[H+] = 12.9 mM,

[Na+] = 32.5 mM, and

[Cl-] = 27.9 mM.
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Although errors of 30% are observed with this simple example, it shows the simplicity

of the ion estimation method. For further estimations, however, the zero charge

condition will be incorporated to increase the accuracy by trimming the ratio between

anions and cations.

The were repeated for solutions consisting of 25 mM NaCl and various concentrations

(ranging from 10 to 70 mM) of either KCl or HCl. A polynomial approximation of

order J = 3 was used, while the number of applied temperatures per electrolyte is N =

25. The results are graphically represented in figure 5. Unlike with the previous small

numerical example, now the zero charge boundary condition is used.

4.3 Discussion

A proportional relationship between the fitted ion concentrations for H+, K+ and Cl-

and the actual concentration is certainly observed, while the fitted Na+ concentration

remains constant. However, the ratio between the imposed ion concentration and the

calculated concentration is not equal to one. In figure 5a the fitted concentrations are

only 80% of the real concentrations, while this is even lower in figure 5b. Such

proportional errors where already mentioned in subsection 2.2.

Other types of errors discussed in this subsection, are errors due to random noise and

errors due to offsets in the measurements. While the effect of the error due to random

noise in the observed conductivity is minimised by taking a large number of

measurements, the size of the error due to offsets in the measured conductivity is

unknown up to now. In subsection 4.4 the propagation of errors of this type will be

discussed.
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4.4 Error propagation

With the knowledge of the absolute errors introduced in subsection 3.2, error bars can

be drawn in previously measured concentration plots. For example, figure 6 is

repeated from figure 5a, but now with error bars and plotted in three separate graphs.

Since there is no formula derived for the absolute errors when using the zero charge

condition, the error bars for the non-zero charge method are placed in the graph with

concentrations fitted using the zero charge condition. This will result into a worst case

guess of the error. The dotted lines in the graphs are the imposed ion concentrations.

The error bars are obviously a bit too pessimistic for Na+ and Cl- since the correlation

between fitted concentration and the real concentration is much larger than may be

assumed according to these error bars.

When implementing the zero charge condition, the matching between anions and

cations will be improved. Although no algorithm is given here for calculating the

absolute errors in the fitted results when this condition is included, it may be assumed

that the errors will decrease.

Although this decrease is not known, it is probably meaningless to fit four ions, since

table 3 shows that then the worst case error will exceed the one molar limit. Because

the given values are only valid in the 40 mS/cm range, the errors are far more than the

present ion concentrations.
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5. Conclusions

This paper demonstrates the feasibility of obtaining selective concentration

information by variations in the operating conditions of an intrinsically non-specific

sensor.

From a non-selective conductivity measurement, it is possible to find specific ion

concentrations by recording the conductivity at different temperatures. The key to this

is that every ion has its own specific limiting molar conductivity which depends

uniquely on temperature. This method needs an assumed set of ions: the electrolyte

conductivity is a linear combination of the specific ionic conductivities of these ions.

The first condition needed for making the system solvable is that in order to fit I ions,

at least N = I measurements at different temperatures are needed. However, to increase

the accuracy, more measurements are preferred and subsequently an estimation

algorithm is used to find the best fit. The second condition is that the characteristic

polynomial used for the temperature dependencies of the limiting molar ionic

conductivities is at least of order J = I - 1. Next, the coefficients ki,j in this polynomial

must be unique for every single ion because the whole recognition is based on the

difference in these coefficients. This is true since every single ion has a different size

and mass and will therefore have another temperature dependency in its ionic

conductivity. Finally, every ion which is significantly present in the solution must be

included in the calculation, since the method is based on the conductivity being a

linear combination of all the separate ionic conductivities.
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In order to increase the accuracy of the calculated ion concentrations, either the

temperature sweep or the number of points N can be increased. Increasing the

temperature sweep, however, has a much more positive effective result on the

accuracy.

For N = I, one unique solution for the ion concentrations is possible. For N > I, an

estimation algorithm must be chosen. A linear estimation algorithm based on the

minimum mean square error was introduced.

Actually, there is a third method for increasing the accuracy. The knowledge that the

sum of all charges is zero in equilibrium can be included in the estimation algorithm

as a boundary condition. Especially for “difficult” ion pairs (like chloride and

potassium for example) the use of this condition appeared to be essential.

However, the use of an estimation algorithm can only decrease the errors due to

random noise. An error in the observed conductivities due to the presence of an ion

which is not in the assumed set, will propagate to an error in the fitted ion

concentrations which can not be decreased by taking more measurements.

For only two ions in the solution, the introduced method is not necessary because then

a single conductivity measurement already determines both ion concentrations. For

four ions, the method is probably too sensitive to errors because a small error in the

measured conductivity might result into an enormous error in the fitted ion

concentration. A worst case analysis shows that the absolute error in the fitted

concentration becomes sometimes more than one molar when the conductivity meter

is switched in the 40 mS/cm range. So, in conclusion, the method will show the best

results in systems having three different types of ions.



26

Summarising, it can be said that the advantage of this method is that it introduces

selectivity by smart data interpretation, and not by the sensor itself. In general, when a

sensor is made selective, fragile and complex selective membranes are introduced.

This results into transducers with a whole sandwich of membranes on top of it.

Electrolyte conductivity sensing, on the other hand, is easy, chemically inert and

mechanically stable since it uses a solid metal structure. It is a reproducible technique

since the cell constant which determines the sensitivity shows no drift in principle.
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Table 1: Statistical information on KCl conductivity measurements at temperatures between

18 °C and 55 °C

Concentration KCl

[mM]

Measured conductivity

(20 �C) [mS/cm]

CDM210 range

[mS/cm]

Mean error

[mS/cm]

Std. dev. of error

[mS/cm]

90 12.6 40 0.0009 0.05

309 38.5 400 0.0053 0.49

413 55.3 400 0.0183 0.50

615 86.2 400 0.0059 0.53
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Table 2: Standard deviations calculated in several temperature ranges

Temperature range [0C] Standard deviation [mS/cm]

< 30 0C 0.31

30 0C . . 40 0C 0.36

40 0C . . 50 0C 0.40

> 50 0C 0.42
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Table 3: Absolute errors in fitted concentrations due to random noise,

for N = 25, T = 20 - 55 °C, J = 3, σv = 0.05 mS/cm

Solution:            Fitted ion: ∆[Na+] (mM) ∆[H+] (mM) ∆ [K+] (mM) ∆ [Cl-] (mM)

K+ and Cl- 32 30

H+ and Cl- 0.80 3.4

H+, Na+, and Cl- 38 1.3 20

H+, K+ and Cl- 12 253 215

H+, K+, Na+ and Cl- 90 28 1.2 M 0.9 M
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Table 4: Amplification factor for a relative error due to an offset in the measured

conductivity to the relative error in the fitted ion concentrations,

for N = 25, T = 20 - 55 °C, J = 3 and σv = 0.05 mS/cm

Solution:                                        Fitted ion: Na+ H+ K+ Cl-

10 mM KCl 38 35

10 mM HCl 2.7 7.5

10 mM HCl + 10 mM NaCl 16 4.0 0.6

10 mM HCl + 10 mM KCl 8.7 206 82

10 mM NaCl + 10 mM KCl + 10 mM HCl 21 5.0 3.9 1.5


