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Abstract

A method for determining separate ion concentrations using a conductivity sensor
was developed and tested. While a single electrical conductivity measurement in a
solution does not give information on the present ion types, a range of measurements
at various electrolyte temperatures does. Since the temperature dependency of the
mobility of an ion is unique for that ion, it appeared to be possible to fit ion
concentrations from a set of conductivity measurements while heating the electrolyte.
For the calculation of the ion concentrations from a conductivity versus temperature
sweep, an estimation algorithm is introduced based on the linear minimum mean
square of the error. Errors in the measured conductivity will propagate through the
algorithm into errors in the fitted ion concentrations. For the validation of the
estimation method, this propagation of errors is also evaluated.
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1. Introduction

A single conductivity measurement is not interesting unless the measured value is
normalised for temperature. The reason for this is that at a higher temperature, ions
become more mobile and will cause an increase in conductivity. So with the same
concentration, an increase in temperature results in an increase in conductivity.
Therefore, in practical conductivity measurements, the measured conductivity is
compensated to 25°C by using a simultaneous temperature measurement.

The total conductivity of an electrolyte expressed in terms of the limiting molar
conductivities of the separate ionsis given by

L=alz el (M (1)

with zj the charge of ion i, ¢j the concentration, | the number of different types of ions

and | {(T) the limiting molar conductivity of ion i. This last one is dependent on
temperature and specific for every single ion. Since a conductivity measurement can
not differentiate between ions, it is not possible to eliminate exactly the temperature
effect.

Industrial temperature compensation methods use the average temperature dependency
of L which is about 2%/°C. This linear fit is the most simple approximation of the
temperature dependency and is suitable for most pure water applications over a



moderate temperature range [1]. More sophisticated fits compensate by using a third
order polynomial, but this method is electrolyte and concentration dependent [2].

An even more complicated temperature compensation can be based on a polynomial
fit for the limiting molar conductivities of the separate ions [3]. A third order
approximation was proposed by Harned and Owen [4] and tabulated for several ions.
The equation is

| (T) =191 +K,,(T - 25)+k,,(T - 25 +k,,(T - 25)° @

with | iO the limiting molar conductivity of ion i at 25°C. This polynomial approach
will be used for ion identification.

2. Theory

The generalised polynomial fit of order Jwith respect to temperature Ty can be written
as

| (T)=I Oiéjl ki (T-T,). 3)

Together with equation (1) the total conductivity of an electrolyte having | types of
ions can now be calculated:

L(T) = ag Ic.l.ak (7 T)‘E @
Manipulation yields:

L= A &lzfer i, (7- 7))
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For conductivity measurements at N different temperatures, | types of ions and a
polynomial fit of order J, amatrix equation can be formed using equation (5):

T BT A
2g €l (Tz - To) (Tz - To) G g1 Kag a 0 u
é . u=¢@ Uy ng 2|C (6)
e a € s 0 é u
g gl (TN - 0) (TN - TO)2 ) (TN - TO)JH &, Ky, kI,JH 8411“ ICI
or
L=TxKx



The meaning of the termsis:
Vector containing measured conductivities at N different temperatures;
Matrix with the temperature information;

Matrix with the polynomial coefficientsk;;;

ol X|| Il |

Vector with the ion concentrations multiplied by the parameters |z|-1%

The question rises whether it is possible to calculate the vector T (containing the
concentration information) from a known T matrix and a measured L vector. It

would be interesting to know if the K matrix can be calculated as well. This would
mean that the present ions can be identified by their found k;; coefficients. However,

the calculation of the K matrix is mathematically not possible since this requires a
known vector ¢, while the determination of this vector isthe desired result. Therefore,
equation (6) can only be used for determining ion concentrations after assuming a set
of coefficientsin the matrix K.

2.1 Calculation of ion concentrations using tabulated coefficients

When the K matrix is assumed to be known, which implies a chosen set of ions,
equation (6) can be written as

Qo.
x
=
|

J .
1,(T1 T,) é‘kz,,(Tl- T,)

—

-

c !’ u
cI°

ol ™

U

)
-
)
N

N

D> D> D
—

12|

2

i QJO;. Iy QJO_
=~
=)
_|

0) é kz,j(Tz - To)j

@ o m?%n’il.mm_

MQ@

[ mY ey ey eny ey ey e
1
» (D> (D> (D> D> D> D> D> D~
O.

('p) D D> D

o
T
o
_|
_|
\_f g
oooo oo oo e

a k,(T.-

j=0

H7\_
— -

z
-
—

:
T
z

where the T xK matrix is written as a single one. The elements in this matrix are

polynomials for the n-th temperature (rows) and the i-th ion (columns). If the T xK
matrix has an inverse, the concentrations will follow from

— —=\-1 __

Ez(TxK) L . 8

The first condition for having an inverse is that the matrix is square, so the minimal
number of necessary experiments is equal to the number of ionsto fit (N =1). For N
larger than | an estimator must be used. The second condition is that the determinant
is nhot equal to zero. This is true when the coefficients are different for every ion and
the order of the polynomial isequal or larger than | - 1.

Summarising, it is possible to find the concentrations of individual ions in a solution
under the following conditions:
The measured conductivity scan must be a linear combination of the temperature
responses for the individual ions. This means that
® Every ion which is significantly present in the electrolyte conductivity must be
represented in the calculations;
® No two ions may have the same temperature dependency (which will probably
never be the case);



® When | types of ions have to be calculated, the conductivity of the electrolyte
must be measured at at least N = | temperatures;
® The order of the used polynomials is equal to or larger than the number of
different ionsto fit minusone (J=1- 1);
The coefficients k;; of the individual ions must be known. The coefficients for the
third order fit are given by Harned and Owen [4] for nine types of ions;
When these conditions are met, the errors in the fitted ion concentrations will be the
result of errors in the measured conductivities. The nature of propagation of an error
in the measured conductivity to an error in the fitted result depends on the type of the
error.

2.2 Error propagation

Three types of errors are considered: errors proportional to the measured conductivity,
errors which manifest as a constant offset in the measured conductivity and random
noise.

Errors due to systematic errors in conductivity measurements, for example due to an
inaccurately assumed sensor slope, representing the sensitivity, can be proportional to
the measurand itself. Proportional errors can be written as an undesired multiplication
of L by x. For such proportional errors, equation (8) must be expanded to

¢ = (T ALx ©

where L is multiplied per element by the proportiona error vector x. When x is
equal for every single measurement, thisresultsin

EX:(T><K)'1><|T><><:E><X. (10)

From this equation it can be concluded that an x per cent error in the measured
conductivity will result in an x per cent error in the calculated ion concentrations.

Other types of errors might introduce a constant offset in the conductivity
measurement. The most likely origin of such an error is the unexpected presence of an
ion which is not included in the fitting algorithm. In that case, the observed
conductivity versus temperature curve can never be a linear combination of the
contributions due to the assumed set of ions. Therefore, this kind of error will be
much more severe than a proportional error. Such a systematic error which manifests
as an unknown offset in the measurement can be written as a constant addition e of L.
In this case equation (8) becomes

= (? ><|?)'1 {L +%) (11)
and manipulation yields

o= (THK) T+(TxK) e=c+(TK) e (12)



which shows that the faulty fitted vector C° is equal to the actual vector T increased
by a constant vector. So the error vector e will result in unknown additions to al the
elements of T, which are different for every element.

Random noise in the measurement shows up as unknown offsets as well, like

described in equation (12). However, the error vector T° - T has another property
now: its elements represent random numbers with the average of zero. In other words,

when the number of experiments is increased, the average of the elementsin C° - C
will go to zero. In the next subsection, an estimation algorithm is introduced which
allows N > 1 in order to reduce the error due to random noise in the conductivity
measurement.

2.3 A linear minimum mean square estimation

The calculation of ion concentrations using the basic algorithm (8) requires
conductivity measurements at as much temperatures as the number of ions to be fitted.
It is more accurate to do more measurements (N > I) and use an estimation method.
The method introduced here is a matrix based algorithm for minimising the mean
square error of the estimation [5]. Consider the generalised system

L=BxX+V (13)

L the vector containing the observations,

B amatrix representing the system (in this context equal to T K ),
C theinput vector to be estimated and
V the noise or error in the measurement.

Theaimisto find an estimate € for the vector © satisfying the observed vector L . In
the ideal case, the estimate is equal to the true value. In practice, however, an error
will be present represented by the error vector, defined as

e=¢-c=¢- E(S). (14)
The aim of the estimation algorithm is to minimise this error vector. Concerning the
system of equation (13), consider the assumptions:
® ¢ and V areuncorrelated (the moment matrix C_, © E(c_vT) is equal to zero);
® the elements of vV are uncorrelated and have equal standard deviations s,. This

also implies that the moment matrix C, © E(WT) isfinite;
® thetrue value of € isunknown so its moment matrix satisfies a ° E(EET) ® ¥

(all variances are very large).

The linear minimum mean square estimate ¢ of T given data L under these
conditions is according to Gauss-Markoff theorem equal to [5]

= (ETE)'lET L (15)

which reduces to (8) for asquare matrix B.



The propagation of errors was already mentioned in subsection 2.2 for the situation
where the number of applied temperatures is equal to the number of ions to be fitted
(N =1). However, by using more than N measurements, a decrease in the final error
can be expected because of suppression of measurement noise. The Gauss-Markov
theorem does also give a method for determining the propagation of errors through the
estimation algorithm. Using the assumed equal variances s,” of the vector Vv, the
moment matrix of the error vector given by equation (14) can be expressed as

— —_—\-1

C.=(8"8) s (16)
which contains all covariances of the fitted vector € in its entries. So the numbers on
the diagonal of this error matrix are the variances of the fitted parameters. Using this
knowledge, the standard deviation of the whole fit can be defined as

—_—\-1
S, = 1/trace(BTB) S, (17)

where the trace function is the summing of the elements on the diagonal of a matrix.
The standard deviation is determined for the Radiometer CDM 210 conductivity meter
to be about 0.5 mS/cm in the 400 mS operational range, and 0.05 mS/cm in the 40 mS
range, as will be shown in the experimental part.

In figure 1 the normalised calculated standard deviation in the estimated concentration
is represented for three different temperature ranges and estimations for N = 2 to 11.
For this numerical example, the coefficients ki; for a 100 mM sodium chloride
solution are used. It can be seen that the accuracy of the estimation can be increased,
either by increasing the number of measurements or the temperature range. The
improvement in accuracy by increasing the temperature range is larger than the
improvement obtained by using more measurements.

T,=20°C, Ty=30°C

T, =20°C, Ty=40°C

T

T,=20°C, Ty=50°C

Normalised standard deviation
of estimation
o
(&3]

0.0 : : : : : |
0 2 4 6 8 10 12
Number of measured data points

Figure 1: Effect of the temperature range and the number of measurements on the estimation accuracy



2.4 Implementation of the zero charge boundary condition

Because in practical solutions the total chargeis equal to zero, the condition

zle, = alze, (18)

Cations Anions

can be implemented in the algorithm in order to increase accuracy and to avoid useless
answers like negative concentrations. This equation can be implemented in the model
(7) as
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werethe T xK matrix has now become an augmented T *K matrix. The elements in

the augmented vector L and the augmented matrix T K do not have an equal unity
anymore. This does not make any difference for numerical evaluations.

This augmented model can be evaluated like the original model using the same
estimation algorithm. However, the condition (18) will have the same priority as every
single measurement and so its importance will be suppressed with an increasing
number of applied temperatures N. Two options are available for increasing its
priority:
The first option is to give the last row of the augmented T xK matrix a weight
factor equal to the number of measurements. The weighted least square form of
(15) is[9]

_ (ETW- 1§)‘1ETW-1 L (20)

ob

with W the weight matrix. This weight matrix is of size (N+1) x (N+1) with on
the diagonal the only non-zero entries being the weight factors. Since the matrix
B will be the augmented T xK matrix, the element on entry (N+1, N+1) will be
the weight factor for the zero charge condition;

Another possibility is obtained by first reducing the measured information and
then implementing the zero charge condition. Concerning equation (6) it can be

concluded that the number of measurements is not in the K xc product matrix.
The measured information (conductivities at N temperatures) can be reduced to

J1 points by first calculating an estimation for the vector K by applying the
simple agorithm (15) to equation (6) according to

= = _=\-1= —
K >C = (TTT) T . (21)

Estimate



The result is a vector with length J+1, not dependent on the number of
measurements. This estimated vector is equal to the product of the coefficient
matrix K and the concentration vector €. The zero charge condition can now
again be implemented by augmenting a matrix:

eklO kz,o . |o U | |0 u
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€ o ékl_v_J______‘_‘__z_vg B RN é
8 2 2 1] @| |c,| IG
dh‘ 1 ‘Zz‘loz ‘ZI‘I

To solve the concentrations from this equation, a second estimation step is

necessary since the augmented K matrix is not square.
The moment matrix of the error vector (16) has now become meaningless, and so the
standard deviation of the fit (17), since these are only valid when having equal
variances s, for al the measurements. The variances are not equal anymore, since the
zero charge condition will have another variance than the actual conductivity
measurements.

2.5 Summary

Reconsidering the original equation (7), describing the set of conductivity

measurements at N temperatures, the ultimate method of determination should be:
Perform the measurements, by heating a solution while measuring the
conductivity. Take more measurements (conductivities at known temperatures)
than the number of ionsto be fitted (N > I) since this will increase the accuracy of
the estimation. Some conductivity meters have an automatic temperature
compensation which must be switched off. Also the use of an auto range function
will disturb the measurement since the variance in the measurement appeared to
be constant per operational range;

Assume a set of ions and calcul ate the matrix B with the elements

Bni = éJ ki,j(Tn - To)j
j=0

with Ty the reference temperature, T, the temperature of measurement n, J the
order of the polynomial fit and k;; the polynomial fit coefficients for the
temperature dependency of the mobilities (which can be found in literature [4]);
Create the conductivity vector L, which is a column of N conductivity
measurements at N different temperatures;
Use equation (15) for finding the estimation vector €, which is a column of the
|zi|c;.1:° products for the | ions. Because the charge of the ions z and the limiting
molar conductivity 1;° are known, the concentrations of the individual ions can be
calcul ated.
If desired, the boundary condition of the sum of all charge being zero can be
implemented as shown in equation (22). However, in that case this condition is
mathematically included as a weighted criterion.



3. Experimental verification of the estimation assumptions and a quantitative
determination of the fitting errors

Before the actual measurements for fitting are presented, the assumptions which
justify the simplification to the estimation algorithm (15) are verified by
measurements. The used set-up is the same as will be used later for doing the actual
concentration determinations. The data needed for the verification are numerical data
on the standard deviations of the conductivity measurements. These results can also be
used to evaluate the propagation of errors (as given by equation (17) in terms of
standard deviations) quantitatively.

3.1 Measurement set-up

During some hours, the conductivity meter (Radiometer CDM 210) was used for
monitoring temperature and conductivity in stirred potassium chloride solutions. The
solution was heated and cooled down several times between room temperature (18 °C)
and about 55 °C. In a spreadsheet program, the data was collected and compared to the
theoretical conductivities for these temperatures. The results arein table 1.

Table 1: Statistical information on KCI conductivity measurements at temperatures
between 18 °C and 55 °C

Concentration KCI ~ Measured conductivity CDM210range Meanerror  Std. dev. of error

[mM] (20 °C) [mS/cm] [mS/cm] [mS/cm] [mS/cm]
90 12.6 40 0.0009 0.05
309 38.5 400 0.0053 0.49
413 55.3 400 0.0183 0.50
615 86.2 400 0.0059 0.53

Notice that the conductivity meter had to be switched to the 40 mS range for the first
sample which corresponds to a fixed operational frequency of 23.4 kHz, and to the
400 mS range for the other three samples (46.9 kHz). Obvioudly, the standard
deviation is dependent on the chosen operational frequency and not on the electrolyte
concentration. However, because the operational frequency is chosen according to the
electrolyte concentration, the standard deviation is indirectly dependent on this
concentration in practical applications.

All the measured errors of the three samples measured with the 400 mS range were
collected into a single error distribution plot as shown in figure 2 which approaches
the normal distribution shape.
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Figure 2: Error distribution in conductivity measurements

3.2 Discussion

Verification of the assumptions

Having this data, the assumptions preceding equation (15) can be verified. Comparing
column 4 to column 2 in table 1, it appears that the mean of the error is much lower
than the observed conductivities. In other words

E(V)=0
which implies directly that the covariance with C isequal to zero aswell:
C,, ° E(ecv") =o.

This proves the first assumption of ¢ and v being uncorrelated.

The other two conditions, being EC ® ¥ and a is finite, are necessary to ensure
that the moment matrix for C is much larger than the moment matrix for Vv:

E@ >> a . Since the standard deviations of v are finite and known (fifth column of
table 1), its moment matrix will be small. More correctly, the moment matrix for v

will go to zero in relation to the corresponding moment matrix for €, which will go to
infinite because its covariance goesto infinite [5].

The value for the standard deviation appears to be constant at a chosen operational
frequency. This means that about 95% of the conductivity measurements is between
the real conductivity plusminus two times this standard deviation for the chosen
operational range.

Besides being dependent on the operational frequency of the conductivity meter, the
standard deviation might be dependent on temperature. Therefore the data of the three
measurements in the 400 mS range, was split into four sets: lower than 30 °C, between
30 °C and 40 °C, between 40 °C and 50 °C and higher than 50 °C. The calculated
standard deviations are in table 2.
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Table 2: Standard deviations calculated in several temperature ranges

Temperaturerange[°C]  Standard deviation [mS/cm]

<30°C 0.31
30°C..40°C 0.36
40°C..50°C 0.40

>50°C 0.42

Although there is a small temperature dependency, it might be concluded that no big
error isintroduced when assuming a temperature independent standard deviation.

The absolute errors in the concentration estimation

Now the variance in the measurement error is experimentally determined, the
propagation of this error through the estimation algorithm can be evaluated. The
absolute errors in the fitted concentrations due to random noise can be calculated
using equation (17). This equation gives the standard deviations in the fitted vector €
which contains the values |z|c 1° for all the fitted ions. So, when the error of a certain
value is defined by two times its standard deviation (95% probability region), the
resulting absolute error in the fitted ion concentration will be

€. = |22||S—|Vlo (ETE) '

with
e, theabsoluteerror in the fitted ion concentration for ion i
[10°° molelitre];
theionic charge for ion i [no dimension;
the limiting molar ionic conductivity [m? S mole™];

the matrix with the temperatures and coefficients k; ;
Sy thestandard deviation in the measured conductivity [S/m];

Evaluation of equation (23) is easier with some numerica examples. When the
conductivity meter is used in the 40 mS/cm range, which is equivalent to a maximum
of about 300 mM KClI, the standard deviation of the measurement is approximately
equal to 0.05 mS/cm as given in table 1. For N = 25 measurements, equidistantly
distributed over a temperature range from 20 °C to 55 °C and using a polynomial
approximation of J = 3 for the ion conductivities, the absolute errors in the fitted
concentrations are calculated. In table 3, the results are summarised for combinations
of two, three and four selected ions.

(23)

wl| =

Table 3: Absolute errors in fitted concentrations due to random noise,
forN=25,T=20-55°C,J=3,s,=0.05mS/cm

Solution: Fitted ion: D[Na’] (mM)  D[H'] (mM) D[K'] (mM) D[CIT (mM)
K" and CI 32 30

H" and CI’ 0.80 34

H*, Na", and CI 38 13 20

H*, K" and CI’ 12 253 215
H', K", Na" and CI’ 90 28 1.2M 09M
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On the average, the fitting of a larger number of ions increases the random noise
propagation error. What can also be seen, is that the type of ion does matter. When the
combination Cl” and K" is present, the errors are bigger. In addition, the result for H"
is more accurate, not only in the result for H" itself, but also for the other ions in the
system. This could be expected since H" has a much more characteristic ionic
conductivity and therefore ion discrimination is more easy.

Since table 3 is only valid when the meter is switched in the 40 mS/cm range, errorsin
the concentrations around the one molar limit will certainly exceed the actual
concentrations. So the fitting of four ions will probably be much too sensitive to
errors.

Remarkable is that the absolute error is not dependent on the concentration, which is
the result from the constant standard deviation of the conductivity measurement. So it
Is important to choose the lowest possible conductivity sensing range on the meter
since than the standard deviation is the lowest as can be seen from table 1.

For errors in the measured conductivity which have not a random nature, the noise
will not be filtered out by the estimation algorithm. An example which was aready
mentioned in subsection 2.2 is the presence of a background electrolyte, consisting of
one or more ions which are not in the assumed set of ions.

When the error e is assumed to be constant at every temperature, the relative error in
the fitted concentration of ion i becomes

= 10 _ [o) = = lu
e = TxK) 7 xe a gT X )
Cii- i QQOW i Row _i g
E = — lu B — = __ lu S xe (24)
i T xK) p xL T xK) p xL
QRow_i QRow_l

where equation (12) is used and for simplicity N = | is taken. When later N > | is
needed, the inverse of the T xK matrix can simply be substituted by the estimation
matrix of equation (15). The elements in the measured conductivity vector L can be
normalised to the conductivity at for example 20 °C. The relative error in the fitted
concentration becomes equal to

3 47"
C5i-C _ Row_i v . € (25)
& 4=\ o Ly
i T xK) 2 .. 20°C
QQow_i e

which means that the relative error in the fitted ion concentrations is proportional to
the relative error due to an offset in the measured conductivity. In table 4 the factors
which amplify the relative error in the measurement to relative errors in the fit are
given for the same solutions as used in table 3. However, while the concentrations did
not matter for the errors due to random noise, now concentrations must be assumed in
order to find numerical values.
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Table 4: Amplification factor for a relative error due to an offset in the measured conductivity
to the relative error in the fitted ion concentrations,
forN=25T=20-55°C,J=3andL,=20°C

Solution: Fittedion: Na' H* K* cl

10 mM KCl 38 35
10 mM HCI 2.7 75
10 mM HCI + 10 mM NaCl 16 4.0 0.6
10 mM HCI + 10 mM KCI 8.7 206 82
10 mM NaCl + 10 mM KCI + 10 mM HCI 21 5.0 39 1.5

An entry in this table means that when estimating for example K* in a 10 mM KCl
solution, a one percent offset in the measured conductivities will result into an 38%
error in the fitted concentration.

Some remarks can be made. The error in the fitted H" concentration does not escalate
excessively, but the error amplification seems to remain lower than ten. A factor ten
means that for a 5% error in the fit, a 0.5% error in the measured conductivity is
allowed. Roughly speaking, the alowed ”background” normality may therefore not
exceed 0.5% of the concentration of interest.

The real problem with this type of error is that it is unpredictable. For example the
amplification of errors can range from 0.6 to 206. Without knowing, a small error due
to a contamination in the system will be enormously amplified. The maximum
amplification which is empirically found here is 206. Although it is not guaranteed
that no larger amplifications will be observed in other systems, a rough estimation of
the possible detection limit of ions in demi water is possible. Using demi water with a
purity of 0.5 mS/cm, for a 5% error in the fitted ion concentrations a conductivity of
2.0 mS/cm isthe lower limit. Thisis equivalent to for example a15 mM KCI solution.
So when trying to fit the ion concentration in solutions with alower concentration, the
impurity of the demi water might already disturb the estimation.

4. Some experimental examples of ion fitting

The fitting theory was tested for electrolytes having only three types of ions. The
reason is that in a two ion system the separate concentrations are already determined
by a single conductivity measurement, while on the other hand the fitting of four ion
types would probably be too sensitive to errors considering the previous subsection.

4.1 Measurement set-up

The presented theory is verified usng a Radiometer CDM210 commercial
conductivity meter in a computer controlled set-up as shown in figure 3. This meter is
capable of measuring conductivity, using a four points electrode (type Radiometer
CDC565), and the solution temperature (using a Radiometer temperature probe type
T201). For this measurement, the automatic temperature compensation of the
CDM210 must be switched off, and the automatic measurement range adaptation as
well. Each measurement starts at room temperature. After a heating and stirring step,
an equilibrium time of 5 seconds is used before measuring. This sequence is repeated
until the temperature exceeds 55°C.

13
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Figure 3: Measurement set-up for recording the conductivity at several temperatures

The protocol is controlled by LabView 3.1 software, providing the user with an
interactive interface. First the user is asked to prepare a solution and place it on the
heater. The program switches on the heater and measures the conductivity
equidistantly over the given range. After the measurement has finished, a dialogue box
asks to select the ions which are present in the solution. In a result window, the
measured curve, the fitted curve and fitted ion concentrations are presented to the
user.

The implementation of the estimation algorithm, both for the normal and the zero
charge case, is also done in LabView. The parameters for equation (2) are taken from
Harned and Owen [4].

4.2 The measurements

Figure 4 shows a series of conductivity measurements in a solution of 10 mM HCl and
25 mM NaCl while the solution was heated and stirred as described. As an illustration,
afitted third order polynomial is plotted as well. It is this polynomial which is alinear
combination of the polynomialsfor H*, Na" and CI".
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Figure 4: A conductivity versus temperature scan in a solution of 10 mM HCI and 25 mM NaCl

By taking the measured conductivities at 29.2, 37.2 and 53.0°C, equation (7) becomes

14



e7 21><mS/cmu e]_057 1093 lO86u éc 349.85x10 *m?S/ moIu
é809 ><mS/cmu e1163 1279 1255u><eC . 501510 “m?S/ mol u
89.83xmS/cml| §L358 1678 1609H ec 76.35X10"*m*S/ moIH

from which the fitted concentrations are:

[H] =129mM,

[Na'] =325mM, and

[CIT =27.9mM.
Although errors of 30% are observed with this ssmple example, it shows the simplicity
of the ion estimation method. For further estimations, however, the zero charge
condition will be incorporated to increase the accuracy by trimming the ratio between
anions and cations.
The were repeated for solutions consisting of 25 mM NaCl and various concentrations
(ranging from 10 to 70 mM) of either KCI or HCI. A polynomia approximation of
order J = 3 was used, while the number of applied temperatures per electrolyteis N =
25. The results are graphically represented in figure 5. Unlike with the previous small
numerical example, now the zero charge boundary condition is used.
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Figure 5: Result of fitting ions in 25 mM NaCl with various (a) HCI or (b) KCI concentrations, using
the zero charge condition

4.3 Discussion

A proportional relationship between the fitted ion concentrations for H*, K™ and CI’
and the actual concentration is certainly observed, while the fitted Na" concentration
remains constant. However, the ratio between the imposed ion concentration and the
calculated concentration is not equal to one. In figure 5a the fitted concentrations are
only 80% of the real concentrations, while this is even lower in figure 5b. Such
proportional errors where already mentioned in subsection 2.2.

Other types of errors discussed in this subsection, are errors due to random noise and
errors due to offsets in the measurements. While the effect of the error due to random
noise in the observed conductivity is minimised by taking a large number of
measurements, the size of the error due to offsets in the measured conductivity is
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unknown up to now. In subsection 4.4 the propagation of errors of this type will be
discussed.

4.4 Error propagation

With the knowledge of the absolute errors introduced in subsection 3.2, error bars can
be drawn in previously measured concentration plots. For example, figure 6 is repeated
from figure 5a, but now with error bars and plotted in three separate graphs. Since there
isno formula derived for the absolute errors when using the zero charge condition, the
error bars for the non-zero charge method are placed in the graph with concentrations
fitted using the zero charge condition. This will result into a worst case guess of the
error. The dotted lines in the graphs are the imposed ion concentrations.
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Figure 6: Fitted ion concentrations with error bars in solutions with 25 mM NaCl and several HCI
concentrations. (a) H, (b) Na* and (c) CI

The error bars are obviously a bit too pessimistic for Na" and Cl™ since the correlation
between fitted concentration and the real concentration is much larger than may be
assumed according to these error bars.

When implementing the zero charge condition, the matching between anions and
cations will be improved. Although no agorithm is given here for calculating the
absolute errors in the fitted results when this condition is included, it may be assumed
that the errors will decrease.

Although this decrease is not known, it is probably meaningless to fit four ions, since
table 3 shows that then the worst case error will exceed the one molar limit. Because
the given values are only valid in the 40 mS/cm range, the errors are far more than the
present ion concentrations.

5. Conclusions

From a non-selective conductivity measurement, it is possible to find specific ion
concentrations by recording the conductivity at different temperatures. The key to this
is that every ion has its own specific limiting molar conductivity which depends
uniquely on temperature. This method needs an assumed set of ions: the electrolyte
conductivity isalinear combination of the specific ionic conductivities of theseions.
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The first condition needed for making the system solvable is that in order to fit | ions,
at least N = | measurements at different temperatures are needed. However, to increase
the accuracy, more measurements are preferred and subsequently an estimation
algorithm is used to find the best fit. The second condition is that the characteristic
polynomial used for the temperature dependencies of the limiting molar ionic
conductivitiesis at least of order J= I - 1. Next, the coefficients k;; in this polynomial
must be unique for every single ion because the whole recognition is based on the
difference in these coefficients. This is true since every single ion has a different size
and mass and will therefore have another temperature dependency in its ionic
conductivity. Finally, every ion which is significantly present in the solution must be
included in the calculation, since the method is based on the conductivity being a
linear combination of all the separate ionic conductivities.

In order to increase the accuracy of the calculated ion concentrations, either the
temperature sweep or the number of points N can be increased. Increasing the
temperature sweep, however, has a much more positive effective result on the
accuracy.

For N = |, one unigue solution for the ion concentrations is possible. For N > I, an
estimation algorithm must be chosen. A linear estimation algorithm based on the
minimum mean square error was introduced.

Actually, there is a third method for increasing the accuracy. The knowledge that the
sum of all charges is zero in equilibrium can be included in the estimation algorithm
as a boundary condition. Especially for “difficult” ion pairs (like chloride and
potassium for example) the use of this condition appeared to be essential.

However, the use of an estimation algorithm can only decrease the errors due to
random noise. An error in the observed conductivities due to the presence of an ion
which is not in the assumed set, will propagate to an error in the fitted ion
concentrations which can not be decreased by taking more measurements.

For only two ions in the solution, the introduced method is not necessary because then
a single conductivity measurement already determines both ion concentrations. For
four ions, the method is probably too sensitive to errors because a small error in the
measured conductivity might result into an enormous error in the fitted ion
concentration. A worst case analysis shows that the absolute error in the fitted
concentration becomes sometimes more than one molar when the conductivity meter
is switched in the 40 mS/cm range. So, in conclusion, the method will show the best
results in systems having three different types of ions.

Summarising, it can be said that the advantage of this method is that it introduces
selectivity by smart data interpretation, and not by the sensor itself. In general, when a
sensor is made selective, fragile and complex selective membranes are introduced.
This results into transducers with a whole sandwich of membranes on top of it.
Electrolyte conductivity sensing, on the other hand, is easy, chemically inert and
mechanically stable since it uses a solid metal structure. It is a reproducible technique
since the cell constant which determines the sensitivity shows no drift in principle.
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