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1. Introduction

In the preceding work report, a set of parameters was selected which will give a quite
complete impression of washing processes. A list of sensors for determining these
parameters was given as well. From this inventarisation, two major shortcomings in
the available sensors became clear.
The first concerns the measurement of bleach activity. Amperometric detection
appears to be the best method for determining bleaching agents. In practice this means
that the concentration of bleaching agents is being measured by evoking an
electrochemical reaction at an inert (noble) metal electrode which is being placed in
the bulk solution. Because a lot of interfering species will be present in this bulk
solution, the selectivity of the measurement will be a problem.
Secondly, no satisfying sensors for determining hardness or the calcium concentration
were reported. A calcium ChemFET could be a candidate, but the use of lipophilic
membranes in washing processes is not desired.
In the same report it was stated that the only way to make a reliable sensor system,
which means a sensor with a decent reference system and without calibration
problems, is to combine a sensor with an accurate actuator device. In this report, a
sensor-actuator system is being evaluated which gives promising results for measuring
hydrogen peroxide.
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2. Bleaching

Bleaches are added to detergents to get a lighter shade in the colour of an object.
Physically this implies increase of the reflectance of visible light at the expense of
absorption. Chemical bleaching is the removal of non-washable soils by reductive or
oxidative decomposition of chromophoric systems. The oxidative bleaches are more
common in washing processes. In laundry, components are present that become
colourless if they are bleached reductively and return to their coloured forms if they
are oxidized by air [1].
In many countries outside Europe the most common bleaching component is sodium-
hypochlorid. In Europe the dominant bleaches are active oxigen based. The active
bleaching component is the intermediate hydrogen peroxide anion which is converted
from hydrogen peroxide in alkaline medium.
The most important source for hydrogen peroxide is sodium perborate (NaBO3×4H2O)
which is present in the crystalline form as the peroxodiborate ion. This ion has
excellent dry life time and hydrolyses in water to hydrogen peroxide.
The peroxide is most active at 90°C, to wash at lower temperatures (<60°C) a bleach
activator must be added. When present in wash liquor of pH 9-12, these activators
react preferentially with hydrogen peroxide to form organic peroxy acids which have a
higher oxidation potential than hydrogen peroxide. An example is TetraAcetyl-
EthyleneDiamine (TAED).
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Figure 2.1: Reaction of TAED and hydrogen peroxide to peroxyacetic acid

The current approach is the lowering of bleaching temperature by bleaching catalysis
where the bleaching power of sodium perborate is increased by some heavy metal
chalates.
Because bleaches are oxidative components, most detection methods are
amperometric. The problem with amperometric detection is that in a medium like
washing liqour, a lot of interfering reactions can be expected.
One possability is to cover the sensor with a membrane to guarantee the necessary
selectivity. However, this requires a more complicated technology for fabricating the
sensor, and will increase the fragility of the device.
Another option is to perform the amperometric experiment in the conventional way,
and to measure whether the desired electrode reaction was selected. This method will
be explained in a following section.
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3. Chemical properties of hydrogen peroxide

An elegant way to represent the reactions and equilibrium formulae is by making a
Pourbaix diagram [2]. This diagram contains information on both the acid-base
behaviour and electrochemical reactions plotted in a potential versus pH graph.

3.1. Acid base behaviour

Decomposition of hydrogen peroxide to the intermediate hydrogen peroxide anion
satisfies:

H O HO H2 2 2⇔ +− + (3.1)

with the acid constant defined as:

k
HO H

H Oa =
⋅

= ⋅
− +

−2

2 2

122 4 10. (3.2)

from which it can be calculated that at pH = 10 the hydrogen peroxide is dissosiated
for only 2.3%. Taking the logarithm of this ka equation yields the first equation for the
construction of the Pourbaix diagram:

log .
HO
H O

pH2

2 2

11 63
−

= − + . (3.3)

It appears that for pH = 11.63 the ratio [HO2
-]/[H2O2] = 1.

3.2. Electrochemical reactions

For both HO2
- and H2O2 an electrochemical interaction with water and H+ can be

observed:

H O H e H O2 2 22 2 2+ + ⇔+ − E0 = 1.776 (3.4a)

HO H e H O2 23 2 2− + −+ + ⇔ E0 = 2.119 (3.5a)

which results in the following potential/concentration dependencies:
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The electrochemical reactions of  HO2
- and H2O2 with dissolved oxygen are:

O H e H O2 2 22 2+ + ⇔+ − E0 = 0.695 (3.6a)

HO H O e2 2 2− + −⇔ + + E0 = 0.338 (3.7a)

with the corresponding potential/concentration equations:
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3.3. The Pourbaix diagram

When the equations (3.3), (3.4b), (3.5b), (3.6b) and (3.7b) are plotted in a single
potential versus pH plot, assuming some values for the concentrations of O2,  H2O2
and HO2

-, this plot is referred to as Pourbaix diagram [2].
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Fig. 3.1: The Pourbaix diagram for the system H2O2-water at 25°C
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From this graph it can be concluded that below the lines of the equations (3.4) and
(3.5), hydrogen peroxide can act as an oxidizing agent with the formation of water.
Above the lines of the equations (3.6) and (3.7), hydrogen peroxide is a reducing
agent with the formation of dissolved oxygen. These two domains have a common
area, in which hydrogen peroxide is said to be double unstable and can decompose
into water and oxygen.

H O H e
H O

2 2

2 2

2 2+ ++ − ⇔
⇔ + ++ −

H O
O H e

2

2 2 2
2 2 2H O ⇔ +2 2 2H O O

So at a metallic surface with an electrode potential in the range of double instability,
the decomposition of hydrogen peroxide is being catalized. Because this
decomposition process is much slower than electrochemical reactions involved with
amperometric experiments, this phenomenon is not likely to be of interest during a
measurement.
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4. Chrono-amprometric detection

A chrono amperometric experiment consists of the application of a potential step to a
chemically inert metal electrode in an electrolyte while monitoring the current. Under
certain conditions the concentration of the reacting species can simply be evaluated
from the measured response. Models for the current response are well-developed for
various electrode shapes.

4.1. The Cottrell equation

At first instance a step is being considered from a value where no electrolysis occurs
to a value in the mass-transfer-controlled region (diffusion only). Assume that the
evoked reaction is represented by:

Ox Red+ →−e (4.1)

and that a planar electrode is being used. The calculation of the diffusion limited
current and the concentration profile COx(x,t) involves the solution of the linear
diffusion equation:

δ
δ

δ
δ

C x t
t

D
C x t

x
Ox

Ox
Ox( , ) ( , )=

2

2
(4.2)

with DOx the diffusion coefficient of the oxidizing species. Three boundary conditions
are assumed (COx

* is the bulk concentration):

•
lim ( , ) *

x Ox OxC x t C
→∞

=
at x = ¥ the concentration is unaffected;

• C x COx Ox( , ) *0 = homogenity of the solution at t = 0;

• C tOx( , )0 0= immediate, complete depletion of Ox at x = 0.

Under this conditions the diffusion equation gives the solution [3]:

i t nFAC
D

tOx
Ox( ) *=

π
(4.3)

with n the number of electrons transferred, F the Faraday constant, A the electrode
surface COx

* the bulk concentration and DOx the diffusion coefficient. This equation
is known as the Cottrell equation and is interesting because the current response is not
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a function of the potential step size. Notice that an i(t) versus 1/Öt plot will be a linear
curve with a CO

* dependent slope.
The expression for the concentration profile becomes:

C x t C
x
D tOx Ox

x

( , ) erf*=








2 0 (4.4)

with the x-axis perpendicular to the electrode surface.

From the third boundary condition an immediate and complete depletion of the
oxidizing species at the electrode surface was assumed. When This is not the case, the
extended Cottrell equation is valid:

( )i t nFAC
D

t
D
D
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Ox Ox
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RT

E E
( ) *

Re

= +

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
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−

−

π
1

0
1

(4.5)

which includes the step size E. The constant R is the gas constant, E0 the redox
potential for the reaction (4.1) and DRed the diffusion coefficient for the reduced
species.
When the (negative) step size E becomes large, the exponential term becomes zero
and the extended Cottrell equation reduces to the normal Cottrell equation. The step
size required to deplete the electrode surface immediately, which means to reduce
equation (4.5) to (4.3), can be calculated from the ration between these equations:
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a
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−

1

1
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where the constant a can bee seen as the accuracy. To have an accuracy of a×100%, the
absolute value of the step size must be larger than:
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(4.6)

For example for the electrode reaction Fe3+ + e- ® Fe2+, the diffusion constants are:
DFe2+ = 1.44×10-9 m2/s and
DFe3+ = 1.81×10-9 m2/s

so for 95% accuracy the step size must be 78 mV larger than E0.
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4.2. Sampled current experiment

At various potential step sizes, four regions can be observed:
1. First, when the step size is smaller than E0, no current will be measured. 
2. For step sizes larger than E0, but not sufficiently large to deplete the electrode

immediately from oxidizing species, the extended Cottrell equation (4.5) can be
used. The current response is a function of the potential step size.

3. In the third region, the condition of immediate deplition is met and the extended
Cottrell equation reduces to the normal Cottrell equation (4.3).

4. When the step size is in the order of the E0 for the oxidizing of water the current
will increase rapidly. For t ® ¥ a net current will remain.

Using the diffusion constants and redox potential for the couple Fe3+/Fe2+, some
Mathcad 4.0 simulations were performed. Figure 4.1 gives the current responses on
four different potential step sizes.
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Fig. 4.1: Simulated chrono-amperometric experiments
[The same data is plotted in both an i(t) and an i(1/Öt) graph]

Because the redox potential for the couple Fe3+/Fe2+ is 0.770 Volt, with a step size of
E = 0.5 Volt no current is observed. The two curves where E0

Fe < E < E0
water are

almost identical because the criteria for Cottrell are met and the response is almost
independent of the step size. The upper curve represents electrolysis of water and does
not go to zero for t ® ¥.

This four-regions approach can be viewed when the current after time t is plotted as a
function of the potential step size. Such a graph is referred to as a sampled current
voltammogram. The time t must be chosen larger than the time necessary for
capacative loading of the electrical double layer. From the same data as used for figure
4.1 a sampled current graph was made for t = 10 ms and  t = 20 ms.
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Fig. 4.2: A simulated sampled current experment

It can be concluded that for potential steps larger then about 0.9 volt, the response
becomes independent of the step size and the Cottrell equation can be used. This is the
region in which the chrono-amperometric experiment should be performed. The
sampled current for steps in the range of the E0 for electrolysis of water is not plotted.
For  95% accuracy equation (4.6) showed that a step of E0 + 78mV was required, this
is in agreement with figure 4.2.

4.3. Some measurements using the Fe2+/Fe3+ couple

In his 100 hours assignment, an Italian student Sergio Botti performed some measure-
ments to verify the theory that was summarized in the previous subsections.

The measurement set-up
The experiments were carried out using a PAR 173 potentiostat and a PAR 276
controller, programmed with a personal computer. An Ag/AgCl reference electrode
was used with a 0.5×1 cm2 platinum reference electrode . The working electrode was
a 1´2 mm2 platinum thin-film on a silicon substrate mounted on a dip-stick. Because
the understanding of the reaction mechanisms of hydrogen peroxide is very
complicated, a more simple couple was evaluated. The reduction of Fe3+ to Fe2+

appeared to be a reaction without much interferences. The reaction of interest is:

Fe3+ + e- ® Fe2+, E0 = 0.770V (4.7)

Sample solutions were used of 20, 10 and 1 mM Fe(NO3)3 in an acid environment
created by HNO3 acid. The solution was bubbled before each experiment using
nitrogen gas.
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Experimental
Figure 4.3 shows the sampled current voltammogram for the 10 mM solution. A
sample time of t = 4 seconds was chosen.

Fig. 4.3: Sampled current voltammogram for the reduction of Fe3+

It can be seen that, in agreement with the calculations using equation (4.6), the current
response becomes independent of the potential step size when E > E0 + 78 mV.
A number of chronoamperometric experiments was performed with different potential
steps and concentrations. As an example, the chrono amperometric plots for five
different step sizes using a 20 mM solution are in figure 4.4.
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Fig. 4.4: Chrono amperometry for the reduction of 20 mM Fe3+

One curve is included where the step size was not large enough, the other four show
an almost step-size independent slope.
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Results
Table 4.1 summarizes the results of the experiments. The data is being used for three
different potential steps: 0.9, 1.0 and 1.2 Volt. Using the same concentration, the
variation in measured slopes was very low (less then 5% of the average slope).

Table 4.1: Results of concentration detection using chrono-amperometry

Concentration
[mM]

number of
experiments

Average slope
[A×sec½]

Calculated conc.
[mM]

20.0 3 -1.1·10-5 22
10.0 3 -5.2·10-6 11
1.00 3 -7.0·10-6 1.5

The fourth column gives the calculated concentrations. These are calculated from the
Cottrell equation (4.3) using the average measured slope.
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5. Feed-back by measuring the local pH

When the reaction:

H O O H e2 2 2 2 2→ + ++ − E0 = 0.695 V (3.6a)

describes the dominant electrochemical behaviour, something interesting occurs. For
each hydrogen peroxide molecule being oxidized, two H+ ions are generated. This
gives the possability of verifying an amperometric experiment by measuring the local
pH. Instead of having a selective sensor, now a combined sensor-actuator system can
be used which has the possability of qualifying the measurement.
The pH sensing can be done using either an ISFET or an iridium oxide potentiometric
sensor. A possible set-up is drawn in figure 5.1.

Substrate

Pt-actuatorPt-counter
electrode electrode

Sensor
ISFETISFET

Reference
Sample
solution

Fig. 5.1: Implementation of the combined sensor-actuator system

At first instance, only the Pt actuator electrode and an ideal pH sensing device is being
considered. The model for the diffusion controlled H+ response due to an chrono-
amperometric experiment is derived in the following subsection.

5.1. Derivation of the theoretical behaviour

The calculation of diffusion controlled processes requires the solution of Fick's law:

∇ =2 1
c

D
c
t

δ
δ

(5.1)

with D the diffusion coefficient and v the distribution which is a function of both the
location (x,y,z) and time. From heat conduction theory a solution for this equation can
be found. The response due to an instantaneous point source Q at (x0, y0, z0) is given
by [4]:
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(5.2)

and it can be seen that, when t ® 0, the value for c becomes zero at all point except
for (x0, y0, z0) where it becomes infinite. The integral

cdxdydz Q=
−∞

∞

−∞

∞

−∞

∞ zzz (5.3)

for each t > 0. This affirms that the produced amount Q is not lost. For the two
dimensional case, or when an instantaneous line source is being considered, equation
(5.2) reduces to:

c x y t
Q
Dt

eline

x x y y

Dt( , , ) =
−

− + −

4

0
2

0
2

4

π

b g b g
. (5.4)

Now consider a source of the structure shown in figure 5.2. The actuator plane
consists of source points (x0, y0), the point of measurement is (x,y).

x-axis

Actuator

(x ,y )0 0 y-axis

(x,y)

(0,0)

W d

Fig 5.2: Source structure used for the mdelling

The actuator is a pair of strips with width w at a distance d. The origin is in the middle
between these electrodes. Solution of the measured response at (x,y) due to an
instantaneous amount Q produced at the electrodes at t = 0 follows from integration of
(5.4) along the actuator:

c x y t c x y t dy c x y t dyactuator line
d

w

d

line
d

d
w

( , , ) ( , , ) ( , , )= +
− −

− +

z z
2

2

0

2

2

0 . (5.5)

In this subsection only the method and the result is given while in appendix A a
complete evaluation is given.
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The next step is the calculation of the response due to a source which is not
instantaneous, but satisfies the Cottrell equation (4.3). Now the constant Q is
exchanged by a sequence of temporary sources dQ/dt (which is the current i through
the actuator!) and the response can be found by convolution in time:

c x y t i c x y t dactuator

t

( , , ) ( ) ( , , )= ⋅ −z τ τ τ
0

(5.6)

where the term Q in vactuator must be set to 1. In appendix A this integral is being
calculated for infinite width w at the point (0,0):

c t nFAC
D
D

erf

t
dH O

H O

H

d
t Dt H( ) *= −

F
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I
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−
z
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MMMMM

O

Q

PPPPP
+

+−1
2

1
2 2

2 2 1
4

0
π

τ

τ τ
τ

a f
a f (5.7)

with n the number of electrons transferred, F the Faraday constant, A the electrode
surface, CH2O2

* the bulk concentration, DH+ and DH2O2 the diffusion coefficients and
d the distance between the electrodes. No closed form solution for the integral was
found.

5.2. Understanding and simplifying the model

The exact solution of the diffusion equation is a rather complicated expression which
can be understood and simplified by splitting the response into three regions in time.
Using a normalized version of equation (5.7) and assuming d/4√DH+ = 1, two plots
were made.
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0 50 100
0
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1

Fig. 5.3: Normalized simulation of the proton concentration during the first
few seconds (a) and after some time (b)
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In the first few seconds, the response will be around zero (figure 5.3a) because of the
diffusion time necessary for mass transport from the working electrode to the sensor.
The second region is the intermediate period, where the concentration rises (figure
2.3b) to the final concentration, which is the third region.

The exact solution (5.7) will be evaluated here for two cases. First a condition will be
derived for the delay time as visualized in figure 5.3a, and after that the final H+

concentration will be calculated.

Diffusion from the electrode to point of measurement
In the first moments after starting the chrono-amperometric experiment, the products
of the electrochemical changes in the solution can not be sensed at the point of
measurement (x,y) = (0,0). The generated H+ ions must be transorted to the sensor by
diffusion.
An expression for this dead-time can be obtained by drawing a straight line in figure
5.3a.  A gentle choice is to take the point where the first derivative has it's maximum,
as drawn in figure 5.4.

t

c(t)

dc(t)
dt

tdelay

Fig. 5.4: Obtaining an impression for the delay time

In appendix A, an expression for the delay time is derived. This delay time is only a
function of the electrode gap d and the diffusion constant of protons:

t erf e
d
Ddelay

H

= −
F
HG

I
KJ
F
H
I
K +

L
N
MM

O
Q
PP
F
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π
3
2
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2
3 4

3

2
3

2

2

(5.8)

where the constant factor is about 0.307. When the substitution

L
d
D

H

=
+4

(5.9)

is made, it can be said that tdelay ≈ 0.307×L2.
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Final concentration
It can be calcutated that for a large time t, the integral:

( )
( )

lim
t

t
erf

L
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t
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−




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
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−
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τ

τ τ
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0

0

so equation (5.7) becomes for t ® ¥:

C nFAC
D
Dt H O
H O

H
inf

*=
+

1
2 2 2

2 2 . (5.10)

where Ctinf is the local concentration of H+ for t is infinity. From the series expansion
of equation (5.7) as given in appendix A, it appears that for large t the ratio L2/t
determines the behaviour completely. So the deviation at time t from the final
concentration Ctinf can be plotted normalized as in figure 5.5.

0 50 100 150 200
80

85

90
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100
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of C

tinf

[%]

t
L2

Fig 5.5: Accuracy of normalized configuration

For example, from this graph it appeares that when t > 100×L2 the final concentration
Ctinf is approached for 96%

5.3. Summary of the model

In the equation for the final H+ concentration (5.10), the slope of the Cottrell equation

S nFAC
D

H O
H O=

2 2
2 2*
π

(5.11)
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can be substituted. This results in the simple equation

C
D

St
H

inf = ⋅
+

π
4

. (5.12)

When the substitution

L
d
D

H

=
+4

(5.9)

is also used, all important equations can be written in terms of L, S and DH+. Table 5.1
gives both the models for the chono amperometric current and the resulting H+

concentration.

Table 5.1: Summary of the model for chrono amperometry with monitored H+ concentration

Period H+ Concentration at (0,0) Measured current
t < 0.307×L2 0 Capacitive

0.307×L2 > t > 100×L2

( )

( )
π τπ τ τ

τS
D

d
H

erf

t

t L
t

2
1 1

0+

−−
















−∫ S
t

t > 100×L2
C

D
St

H

inf = ⋅
+

π
2

≈ 0

The current follows from the chrono amperometric experiment. Just after the
application of the potential step, the current will not be determined by the Cottrell
equation but is controlled by capacitive loading of the electrical double layer of the
working electrode. After t > 100×L2 the current will be more then 10 times smaller
then the current at t = L2 and reduces to zero.

Table 5.2: typical values for the constants

actuator distance
d [µm]

constant
L [sec½]

delay time
tdelay [sec]

95 % rise time
t95% [sec]

40 0.10 1.02·10-5 3.3·10-3

120 0.31 29.6·10-3 9.6

A typical value for the constant L can be calculated using DH+ = 9.33×10-9 m2/s. This
results in the values for L as given in table 5.2 from which the delay times can be
calculated. The time after which Ctinf is given in the fourth column. Because the
diffusion constant of H2O2 can not easily be found in literature, equal diffusion
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constants for reducing and oxidizing species are assumed. A typical value for Ctinf at a
H2O2 concentration of 1 mM and using an electrode area of two times 1×2 mm2 is 1.2
mM. This means that due to a chronoamperometric experiment in a solution of pH 7,
the local pH changes to 2.9 in t95% seconds, independent of the potential step size.

5.4. Measurements

The measurement set-up
Electrochemical experiments are generally carried out using a potentiostat. In
combination with an ISFET amplifier however, a grounding problem occurs. A
schematic view of a potentiostat is drawn in figure 5.6 [3].

+

-

V

Reference

Counter electrode

Working electrode

electrode
Auxiliary input

Fig. 5.6: Schematic set-up of a potentiostat with auxiliary input

In a normal potentiostat, the working electrode is grounded. Furthermore, the auxiliary
input which is used to sample the ISFET response is relative to the ground. So, when a
normal ISFET amplifier set-up is used, where the output is relative to the reference
electrode (figure 5.7), a conflict appears because the reference electrode should be
grounded now.

V
Reference
electrode

pH

ISFET

ISFET-amplifier

Fig. 5.7:  ISFET amplifier set-up

This problem will not be solved when a floating ISFET amplifier is used: the
potentiostat input potential V is still placed between the (virtual) ground and the
reference electrode.
When using a differential ISFET set-up, however, the input potential V becomes a
common signal and will not appear in the output signal.
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VpH

ISFET

electrode

+

-

Reference

Measuring
ISFET

ISFET

reference

Fig. 5.8: Measurement set-up

The experiments were performed using a PAR 263A potentiostat with a PAR Model
270/250 computer control program. Two custom made ISFET amplifiers were used in
combination with a standard differential amplifier.
For the actuator, the measuring ISFET and the reference ISFET a dipstick was used
with two actuator ISFETs. The ISFETs were of type JH/GL date 10/95 with a 20/300
nm Ti/Pt actuator on a 30 nm Ta2O5 layer. The gap in the actuator (where the ISFET
gate is located) had a width of d = 120 µm.

Fig. 5.9: The dipstick with two actuators/ISFET structures

The distance between the two ISFETs was k = 1 cm. Both the ISFET refererence and
counter electrode where platinum electrodes of 0.5×1 cm2, an Ag/AgCl reference
electrode was used.

Experimental
The experiments were carried out in 10, 50 and 100 mM H2O2 solutions using KNO3
as a background electrolyte. The pH of this solution was measured with a normal pH
meter  before each measurement.
Using the set-up of figure 5.8 a potential step of 1 volt was examined. Figure 5.10
gives both the actuator currents and the ISFET responses.
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Fig 5.10: Measurements in 10, 50 and 100 mM H2O2 samples

The effect of diffusion from actuator to the sensor is visualized in figure 5.11 where
the H+ concentration is calculated from the ISFET potentials using the bulk pH and
the potential at t = 0.

0.5 1 1.5
0

5

10

H  conc

[mM]

+

Time [sec]]

Fig 5.11: plot of the first few seconds of the response

Discussion
After some time the pH reaches a maximum value, which indicates a constant H+

concentration. This rise time (which is about 10 seconds) is in agreement with the
prediction in table 5.2.

In table 5.3 the data of figure 5.10 is evaluated. The first colomn contains the imposed
concentration of the solution, column 2 the measured bulk pH.
The slope of the I versus 1/√t characteristic as theoretically given by equation (5.11)
can be determined from the measured current response. The third column of table 5.3
summarizes the measured values. This satisfies the Cottrell equation because this
slope is linear dependent on the concentration. Using n = 2, F = 9.6487⋅104 C/mol and
A = 4 mm2 a value for the diffusion coefficient of H2O2 can be calculated by
comparing the measured slope to the theoretical one:

DH2O2 = 4.1⋅10-6 m2/s (±1.5⋅10-6 m2/s)
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Table 5.3: Evaluation of the time-current measurements

Conc
[mM]

Measured
bulk pH

Measured slopes
of the I versus
1/√t relation

[A/sec2]

Calculated
Ctinf from
column 2

[M]

Equivalent
pH change

Calculated
∆V in ISFET

output
[mV]

Measured
∆V in ISFET

output
[mV]

10 5.52 1.052⋅10-5

1.105⋅10-5
0.097
0.101

-4.51
-4.53

266
267

250
262

50 5.20 3.086⋅10-5

3.796⋅10-5
0.283
0.348

-4.65
-4.73

274
280

255
272

100 5.00 7.931⋅10-5

8.610⋅10-5
0.728
0.79

-4.86
-4.90

287
289

273
282

This value is not necessary for determining the final H+ concentration Ctinf because
equation (5.12) gives the relation in terms of the slope S. The fourth column of table
5.3 gives the Ctinf values calculated from these slopes.
For finding the equivalent pH change that will be monitored with the ISFETs, the
absolute bulk pH is necessary:

∆pH C pHpH
t bulkbulk= − + −−log inf10d i .

This results in an ISFET amplifier output change of ∆pH ⋅ 59mV, given in colomn 6.
The measured response does not change a lot with the concentration because it is the
logarithm of a concentration. So it is not accurate to make a quantitative conclusion
from the output potential. The measured output potentials are in global agreement
with the measured ones (the last column).

From figure 5.11 the delay time appears to be 0.7 seconds, which is much larger then
the calculated 30 ms. Probably, the assumption of an infinite large actuator is not right
for the used configuration. A smaller hole in the actuator might solve the problem.
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6. Conclusions

The development of this system was stopped because it does not fit in the idea of
metal film-only sensors which was concluded in the previous work report.

During a chrono-amperometric experiment, the only way to control the selectivity is to
vary the applied potential step. Which reactions take place is dependent on the
electrochemical properties of the solution.
By monitoring the pH during a chrono-amperometric experiment, a decision can be
made whether the experiment resulted in oxidizing hydrogen peroxide or not. So
while the selectivity of this method is still poor, a feedback is now obtained on the
result of the experiment.
For quantitative evaluations about the bulk hydrogen peroxide concentration, the
response of the current is more accurate than making a conclusion from the ISFET
potential change. This is because the last one requires the use of an anti-logarithmic
operation.
The dimensions of the used actuator did not represent the model quite well: the
actuator was not infinite large. This probably caused an error in the first part of the
response which can be minimized by taking an actuator with a smaller gap for the
sensor. When this part works, the diffusion coefficient of  hydrogen peroxide can be
measured.

The system described here is an example of the combination of existing sensors and
actuators which results in more parameters then using the single sensors. Besides that
the fundamental reference electrode problem which occurs when a potentiostat is used
in combination with an ISFET amplifier is solved by taking a differential ISFET set-
up.
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Appendix A: Derivation of the diffusion model

In this appendix some derivations of equations used in chapter 5 are given.

Equation (5.7):
Derivation of the exact solution for the configuration of figure 5.2 with w ® ¥

The special solution for Fick's law:

∇ =2 1
c

D
c
t

δ
δ (5.1)

for an instantaneous heat pulse at time t = 0 at point (x0, y0, z0) is taken from Carslaw
and Jeager [4]:
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When we are only interested in the two dimensional case (is equal to spatial
integration over an infinite number of sources at (x0,y0,z0) along the z axis):
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Now all the sources along the y-axis are being integrated along the structure:
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The two integrals can be solved:
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and the general solution becomes:
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When w ® ¥ two of the four error functions go to a constant value and assume x0=0:
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After integration in space, integration in time is performed. Now, the instantaneous
point source Q is being exchanged by an infinite number of momentary sources dQ/dt.
The value of this momentary source at tiome t is equal to the input current i(t). This
momentary current is being integrated with a time-translated response function:

c x y t i c x y t dact
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( , , ) ( ) ( , , )= ⋅ −z τ τ τ
0

(5.6)
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and this special type of integral is referred to as convolution integral. Calculation
using the Cottrell equation (4.3) yields:
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At the location of the sensor (x,y) = (0,0) this simplifies to:
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Equation (5.8):
Derivation of an expression for the delay time

For the delay time (the time between t = 0 and a significant concentration change at
(x,y) = (0,0)) the slope of the response for small t is extrapolated (figure (5.4)). A
straight line will be constructed through the point where the first derivative has the
lowest variation.
Before the first derivative of (5.7) can be found, this equation must be simplified. The
following series expansion is helpful:
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When t L<<  the series expansion can be reduced to:
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The first and second derivatives become:
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Equation (5.10):
Derivation of the concentration for t ® ¥

From the series expansion:
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it can be seen that the first term goes to zero for t ® ¥ (because erf(0)=0). All other
terms contain a factor exp(-L2/t), which goes faster to zero for  t ® ¥ than any other
tx term, so
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An expression for the final concentration is
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